K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

a) Để (d) song song với (d') thì \(\hept{\begin{cases}2=2m^2\\m^2+1\ne m^2+m\end{cases}\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne1\end{cases}\ne}m=-1}\)

b) Phương trình hoành độ giao điểm giữa (P) và (d) là:

 \(x^2=2x+m^2+1\)
\(\Leftrightarrow x^2-2x-\left(m^2+1\right)=0\)
\(\Delta'=1+\left(m^2+1\right)=m^2+2>0\)
=> Phương trình luôn có 2 nghiệm phân biệt
=> (d) luôn cắt (P) tại 2 điểm phân biệt A và B (đpcm)

c) Ta có:
\(x_A^2+x_B^2=\left(x_A+x_B\right)^2-2x_Ax_B=14\)(1)
Theo ta-let ta có:
\(\hept{\begin{cases}x_A+x_B=2\\x_A.x_B=-m^2-1\end{cases}}\)

Phương trình (1) trở thành:
\(2^2-2.\left(-m^2-1\right)=14\)
\(\Rightarrow m=\pm2\)
 

23 tháng 5 2018

CẢM ƠN BAN HẢI NHIỀU NHA !

26 tháng 5 2018

Mình học hóa 9 hơi kém nên chịu bài này :/

6 tháng 9 2019

Xét \(4P=4x^2+4xy+4y^2-12x-12y+12\)

\(=\left[\left(2x\right)^2+2.2x.y+y^2\right]-6\left(2x+y\right)+9+3y^2-6y+3\)

\(=\left(2x+y-3\right)^2+3\left(y-1\right)^2\ge0\)

Suy ra \(P\ge0\left(qed\right)\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}2x+y-3=0\\y=1\end{cases}}\Leftrightarrow x=y=1\)