Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d\(\ne\)0)
=> \(\frac{a}{b}=1\)=> a = b
\(\frac{b}{c}=1\) => b = c
\(\frac{c}{d}=1\) => c = d
\(\frac{d}{a}=1\) => d = a
=> a = b = c = d
Khi đó, ta có: \(\frac{2a-b}{c+d}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
hay \(\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)
\(=\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}\)
= \(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
= \(\frac{1}{2}.4=2\)
Mỗi tỉ số đã cho đều bớt đi 1, ta đc :
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{a}-1\)
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
TH1 : Nếu a + b + c + d khác 0 thì a = b = c = d lúc đó M = 1 + 1 + 1 + 1 = 4
TH2 : Nếu a + b + c + d = 0 thì a + b = -( c + d ) ; b + c = -( d + a ) ;
c + d = -( a + b ) ; d + a = -( b + c )
Lúc đó M = (-1) + (-1) + (-1) + (-1) = -4
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(\Rightarrow\) \(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\) \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu \(a+b+c+d=0\) \(\Rightarrow\) \(a+b=-\left(c+d\right)\)
\(b+c=-\left(d+a\right)\)
\(\Rightarrow\) \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(=-4\)
Nếu \(a+b+c+d\ne0\) \(\Rightarrow\) \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\)
\(\Rightarrow\) \(a=b=c=d\)
\(\Rightarrow\) \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(=1+1+1+1\)
\(=4\)
Vậy M = - 4 hoặc M = 4
Study well ! >_<
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d khác 0) nên a = b = c = d
\(\Rightarrow\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)
\(=\frac{1}{2}.4=2\)
Áp dụng t/c của dãy tỉ số bằng nhau có :
\(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
\(=\frac{2019a+2019b+2019c+2019d}{a+b+c+d}=2019\)
Bn chỉ cần xét a+b+c+d = 0
a+b+c+d khác 0
là đc
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{a+b+c+d}=1\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=1\)
\(\Rightarrow a=b=c=d\)
Khí đó:
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(M=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=4\)
Vậy M = 4
Vì \(\frac{a}{b+c+d}\)= \(\frac{b}{a+c+d}\)= \(\frac{c}{a+b+d}\)= \(\frac{d}{a+b+c}\)nên
\(\frac{a}{b+c+d}\)+1 = \(\frac{b}{a+c+d}\)+1 = \(\frac{c}{a+b+d}\)+1 = \(\frac{d}{a+b+c}\) +1
hay\(\frac{a+b+c+d}{b+c+d}\) = \(\frac{a+b+c+d}{a+c+d}\)= \(\frac{a+b+c+d}{a+b+d}\)= \(\frac{a+b+c+d}{a+b+c}\)
Mà a + b + c + d \(\ne\)0 \(\Rightarrow\) \(b+c+d=a+c+d=a+b+d=a+b+c\)
\(\Rightarrow\) \(a=b=c=d\)
\(\Rightarrow\) \(M=4\)
Ta có:\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
\(\Rightarrow\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}\)
\(\Rightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{a+b+d}{c}+1=\frac{a+b+c}{d}+1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Vì a+b+c+d\(\ne\)0=>a=b=c=d
\(\Rightarrow A=\frac{a+c}{b+d}+\frac{a+b}{c+d}+\frac{a+c}{b+d}+\frac{b+c}{a+d}=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)