K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1 (1,0 điểm). Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = x³ - 3x.Câu 2 (1,0 điểm). Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = x + 4/x trên đoạn [1;3].Câu 3 (1,0 điểm).a) Cho số phức z thỏa mãn (1 - i)z -1 + 5i = 0. Tìm phần thực và phần ảo của z.b) Giải phương trình log2(x² + x + 2) = 3.Câu 4 (1,0 điểm) 1 Tính tích phân I =∫(x - 3)exdx 0 Câu 5 (1,0...
Đọc tiếp

Câu 1 (1,0 điểm). Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = x³ - 3x.

Câu 2 (1,0 điểm). Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = x + 4/x trên đoạn [1;3].

Câu 3 (1,0 điểm).

a) Cho số phức z thỏa mãn (1 - i)z -1 + 5i = 0. Tìm phần thực và phần ảo của z.

b) Giải phương trình log2(x² + x + 2) = 3.

Câu 4 (1,0 điểm)

 1 
Tính tích phân I =(x - 3)exdx
 0 

Câu 5 (1,0 điểm). Trong không gian với hệ trục Oxyz, cho các điểm A (1; -2; 1), B(2; 1; 3) và mặt phẳng (P) x - y + 2z - 3 = 0. Viết phương trình đường thẳng AB và tìm tọa độ giao điểm của đường thẳng AB với mặt phẳng (P).

Câu 6 (1,0 điểm).

a, Tính giá trị của biểu thức P = (1 - 3cos2α)(2 + 3cos2α), biết sinα = 2/3.

b, Trong đợt phòng chống dịch MERS-CoV, Sở y tế thành phố đã chọn ngẫu nhiên 3 đội phòng chống dịch cơ động trong số 5 đội của Trung tâm y tế dự phòng thành phố và 20 đội của Trung tâm y tế cơ sở để kiểm tra công tác chuẩn bị. Tính xác suất để có ít nhất 2 đội của các Trung tâm y tế cơ sở được chọn. 

Câu 7 (1,0 điểm). Cho hình chóp S.ABCD có đáy ACBD là hình vuông cạnh a, SA vuông góc với mặt phẳmg (ABCD), góc giữa đường thẳng SC và mặt phẳng (ACBD) bằng 45o. Tính theo a thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SB, AC.

Câu 8 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A trên cạnh BC; D là điểm đối xứng của B qua H; K là hình chiếu của vuông góc C trên đường thẳng AD. Giả sử H (-5;-5), K (9;-3) và trung điểm của cạnh AC thuộc đường thẳng: x - y + 10 = 0. Tìm tọa độ điểm A.

0
AH
Akai Haruma
Giáo viên
3 tháng 4 2022

Lời giải:

1. Để đths đi qua $A(-2;-2)$ thì:

$y_A=(m-2)x_A^2$

$\Leftrightarrow -2=(m-2)(-2)^2$

$\Leftrightarrow m-2=\frac{-1}{2}$
$\Leftrightarrow m=\frac{3}{2}$
2.

PT hoành độ giao điểm của đths câu 1 với $y=-1$ là:

$(\frac{3}{2}-2)x^2=-1$

$\Leftrightarrow \frac{-1}{2}x^2=-1$

$\Leftrightarrow x^2=2$

$\Leftrightarrow x=\pm \sqrt{2}$

Vậy 2 tọa độ giao điểm là $M(\sqrt{2}; -1); (-\sqrt{2}; -1)$

Câu 1: Tính \(A=\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}\)\(B=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)Câu 2: Giải phương trình và hệ phương trình saua) \(3x^2+2x=2\sqrt{x^2+x}+1-x\)b) \(\hept{\begin{cases}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{cases}}\)Câu 3: Cạnh huyền của một tam giác vuông bằng 10cm. Hai cạnh góc vuông hơn kém nhau 2cm. Tìm các cạnh góc vuông...
Đọc tiếp

Câu 1: Tính 

\(A=\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}\)

\(B=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)

Câu 2: Giải phương trình và hệ phương trình sau

a) \(3x^2+2x=2\sqrt{x^2+x}+1-x\)

b) \(\hept{\begin{cases}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{cases}}\)

Câu 3: Cạnh huyền của một tam giác vuông bằng 10cm. Hai cạnh góc vuông hơn kém nhau 2cm. Tìm các cạnh góc vuông của tam giác đó.

Câu 4: Từ một điểm A ở ngoài đường tròn (O; R) vẽ tiếp tuyến AB và cát tuyến AMN của đường tròn (M nằm giữa A và N; B thuộc cung lớn MN). Gọi C là điểm chính giữa cung nhỏ MN. Đường thẳng MN lần lượt cắt OC và BC tại I và E.

a) CMR: Tứ giác AIOB là tứ giác nội tiếp.

b) CMR: \(\Delta ABE\)cân.

c) Biết AB = 2R. Tính chu vi của nửa đường tròn ngoại tiếp tứ giác AIOB theo R.

d) Kẻ tiếp tuyến thứ hai AL của (O). Gọi K là giao điểm của LB và AO. CMR: AM.AN = AL2; AK.AO = AM.AN

Câu 5: Cho x, y là hai số thỏa mãn x + 2y = 3. Tìm giá trị nhỏ nhất của: E = x2 + 2y2 

Câu 6: Tìm các cặp nghiệm nguyên trong các trường hợp sau

a) x2 - xy + y2 = 2x - 3y - 2

b) m2 + n2 = m + n + 8

Help me!!!

Thanks trc

3
11 tháng 8 2020

CÂU 1:

\(A=\sqrt[4]{\left(2\sqrt{6}+5\right)^2}+\sqrt[4]{\left(5-2\sqrt{6}\right)^2}\)

\(A=\sqrt{2\sqrt{6}+5}+\sqrt{5-2\sqrt{6}}\)

\(A=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(A=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\)

\(A=2\sqrt{3}\)

11 tháng 8 2020

CÂU 1:

\(B=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(B=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)

\(B=1-a\)

Vậy \(B=1-a\)

5 tháng 3 2022

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-m+1\)\(\Leftrightarrow x^2-mx+m-1=0\)

Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=\left(-m\right)^2-4.1\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\)\(\Leftrightarrow m-2\ne0\)\(\Leftrightarrow m\ne2\)

Khi đó \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)(hệ thức Vi-ét)

Độ dài cạnh huyền của tam giác vuông có 2 cgv là \(x_1,x_2\)là \(\sqrt{x_1^2+x_2^2}=\sqrt{\left(x_1+x_2\right)^2-2x_1x_2}=\sqrt{m^2-2\left(m-1\right)}=\sqrt{m^2-2m+2}\)

Ta có \(x_1x_2=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)hệ thức lượng trong tam giác vuông.

\(\Leftrightarrow m-1=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)\(\Leftrightarrow\frac{m-1}{\sqrt{m^2-2m+2}}=\frac{1}{\sqrt{5}}\)\(\Leftrightarrow\sqrt{\frac{m^2-2m+1}{m^2-2m+2}}=\sqrt{\frac{1}{5}}\)\(\Leftrightarrow\frac{m^2-2m+1}{m^2-2m+2}=\frac{1}{5}\)\(\Leftrightarrow5m^2-10m+5=m^2-2m+2\)\(\Leftrightarrow4m^2-8m+3=0\)

\(\Delta_1=\left(-8\right)^2-4.4.3=16>0\)

\(\Rightarrow\orbr{\begin{cases}m_1=\frac{-\left(-8\right)+\sqrt{16}}{2.4}=\frac{3}{2}\\m_2=\frac{-\left(-8\right)-\sqrt{16}}{2.4}=\frac{1}{2}\end{cases}}\)

Vậy để [...] thì \(\orbr{\begin{cases}m=\frac{3}{2}\\m=\frac{1}{2}\end{cases}}\)

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge24x+4x12  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}4x=4x1=1x=41). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016A2x+14x+3+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014A4x+14x+3+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014Ax+14x4x+1+2014=x+1(2x1)2+20142014

Hơn nữa    A=2014A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.{x=412x1=0  \Leftrightarrow x=\dfrac{1}{4}x=41 .

Vậy  GTNN  =  2014

23 tháng 5 2018

a) Để (d) song song với (d') thì \(\hept{\begin{cases}2=2m^2\\m^2+1\ne m^2+m\end{cases}\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne1\end{cases}\ne}m=-1}\)

b) Phương trình hoành độ giao điểm giữa (P) và (d) là:

 \(x^2=2x+m^2+1\)
\(\Leftrightarrow x^2-2x-\left(m^2+1\right)=0\)
\(\Delta'=1+\left(m^2+1\right)=m^2+2>0\)
=> Phương trình luôn có 2 nghiệm phân biệt
=> (d) luôn cắt (P) tại 2 điểm phân biệt A và B (đpcm)

c) Ta có:
\(x_A^2+x_B^2=\left(x_A+x_B\right)^2-2x_Ax_B=14\)(1)
Theo ta-let ta có:
\(\hept{\begin{cases}x_A+x_B=2\\x_A.x_B=-m^2-1\end{cases}}\)

Phương trình (1) trở thành:
\(2^2-2.\left(-m^2-1\right)=14\)
\(\Rightarrow m=\pm2\)
 

23 tháng 5 2018

CẢM ƠN BAN HẢI NHIỀU NHA !