K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

nhân từng hạng tử của giả thiết với 2 rồi cộng và trừ từng cái một là ra còn gì nx

Trình bày dài lắm

3 tháng 1 2019

Ta có : \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)

=> \(\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)

=> \(\frac{a+2b+c}{x}=\frac{2\left(2a+b-c\right)}{2y}=\frac{4a-4b+c}{z}=\frac{a}{x+2y+z}\)(1)

=> \(\frac{2\left(a+2b+c\right)}{2x}=\frac{2a+b-c}{y}=\frac{4a+4b+c}{z}=\frac{b}{2x+y-z}\)(2)

=> \(\frac{4\left(a+2b+c\right)}{4x}=\frac{4\left(2a+b-c\right)}{4y}=\frac{4a-4b+c}{z}=\frac{c}{4x-4y+z}\)(3)

Từ (1);(2);(3) suy ra \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4b+z}\)

11 tháng 2 2019

a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)

     \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Theo đề: \(\left|x-2y\right|=5\)

\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )

    \(x-2y=-5\) (nếu \(x< 2y\) )

Vậy có hai trường hợp

TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)

TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)

b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)

    \(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)

Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)

\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)

11 tháng 2 2019

c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(\frac{2x+2y+2z}{x+y+z}\)

\(\frac{2\left(x+y+z\right)}{x+y+z}=2\)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x 

                                       => y + z + x + 1 = 3x

                                       => 1/2 + 1 = 3x

                                      => 3/2 = 3x

                                      => x = 3/2 : 3 = 1/2

=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y

                                        => x + z + y + 2 = 3y

                                        => 1/2 + 2 = 3y

                                       => 5/2 = 3y

                                       => y = 5/2 : 3 = 5/6

=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z

                                         => x + y + z - 3 = 3z

                                          => 1/2 - 3 = 3z

                                        => 3z = -5/2

                                         => z = -5/2 : 3 = -5/6

Vậy ...

10 tháng 10 2019

\(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) ; \(\frac{y}{z}=\frac{4}{3}\Rightarrow\frac{y}{4}=\frac{z}{3}\)

ta có :

\(\frac{x}{3}=\frac{y}{5}\)

\(\frac{y}{4}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{15}\)

áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{12}=\frac{y}{20}=\frac{z}{15}=\frac{4x}{48}=\frac{2z}{30}=\frac{4x-y+2z}{48-20+30}=\frac{116}{58}=2\)

\(\frac{x}{12}=3\Rightarrow x=36\)

\(\frac{y}{20}=2\Rightarrow y=40\)

\(\frac{z}{15}=2\Rightarrow z=30\)

28 tháng 7 2018

ta có:\(\frac{7}{2x+2}=\frac{3}{2y-4}\)=\(\frac{5}{z+4}\)=\(\frac{7+3}{2x+2+2y-4}=\frac{10}{2x+2y+2-4}=\frac{10}{2\left(x+y\right)-2}=\frac{5}{x+y-1}\)\(=\frac{5+5}{x+y+z-1+4}\)=\(\frac{10}{17-1+4}=\frac{10}{20}\)=\(\frac{1}{2}\)

từ đó bn tính ra nha

28 tháng 7 2018

thank you !

15 tháng 12 2015

bạn bảo bạn làm câu a r nên mik thôi còn câu b là:

ta có

x-1/2 = y-2/3 = z-3/4 = 2x-2/4 = z-3/a

áp dụng t/c của dãy tỉ số = nhau, ta có:

2x-2+3y-6-z+3 / 4+9-4 = 2x+3y-z-5 / 9 = 50-5 / 9 =45 / 5 = 5

=>

x-1 / 2 = 5=>x-1=10 => x=11

y-2 / 3 = 5 => y-2 = 15 => y = 17

z-3 / 4 = 5=> z-3 = 20 =>z =23

tick nha bạn

11 tháng 1 2019

Mãi mới nghĩ ra cách này:

\(VT=\frac{x}{\left(x+y\right)+\left(x+z\right)}+\frac{y}{\left(y+x\right)+\left(y+z\right)}+\frac{z}{\left(z+x\right)+\left(z+y\right)}\)

Áp dụng BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Ta có: \(\frac{x}{\left(x+y\right)+\left(x+z\right)}=x\left(\frac{1}{\left(x+y\right)+\left(x+z\right)}\right)\)

\(\le\frac{1}{4}x\left(\frac{1}{x+y}+\frac{1}{x+z}\right)=\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Thiết lập tương tự 2 BĐT còn lại và cộng theo vế,ta có:

\(VT\le\frac{1}{4}\left[\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{x}{x+z}+\frac{z}{x+z}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)\right]\)

\(=\frac{1}{4}\left(1+1+1\right)=\frac{3}{4}\) (đpcm)

Dẫu "=" xảy ra khi \(x=y=z\)

10 tháng 1 2019

Dễ thôi bạn ơi\(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}=\frac{x+y+z}{2x+y+z+2y+x+z+2z+x+y}=\frac{x+y+z}{4\left(x+y+z\right)}=\frac{1}{4}\)

      Vì   \(\frac{1}{4}< \frac{3}{4}\)      

      \(\Rightarrow\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\le\frac{3}{4}\)