K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

Áp dụng BĐT Cô si cho vế trái ta có 

\(\left(ab+2bc\right)\left(2ab+bc\right)\le\frac{\left(3\left(ab+bc\right)\right)^2}{4}\)

=> ĐPCM  dấu = khi a = b 

_Kudo_

27 tháng 5 2018

Nhầm, bỏ bớt 1 cái 1/3 đi

27 tháng 5 2018

tích đi rồi Pain làm

30 tháng 9 2018

Ta có : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( Luôn đúng )

Dấu \("="\) hiển nhiên xảy ra khi \(a=b=c\)

12 tháng 3 2020

Chứng minh tương đương là xong nha

\(\Leftrightarrow a^2b^2+2ab^2c+b^2c^2\le2a^2b^2+2b^2c^2\)

\(\Leftrightarrow a^2b^2-2ab^2c+b^2c^2\ge0\)

\(\Leftrightarrow\left(ab-bc\right)^2\ge0\)luôn đúng

dấu = khi a=c

_Kudo_

13 tháng 3 2020

Áp dụng bđt Bunhiacopski:

\(2\left(a^2b^2+b^2c^2\right)=\left(1+1\right)\left(a^2b^2+b^2c^2\right)\ge\left(ab+bc\right)^2\)

Dấu "=" khi a = c

31 tháng 10 2017

đúng rồi

1 tháng 11 2017

 chó điên

29 tháng 7 2016

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

11 tháng 7 2017

ÁP dụng BĐT AM-Gm  ta có: 

\(Σ\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}\ge\frac{4}{9}\cdotΣ\frac{a^2}{\left(ab+1\right)^2}\)

ĐẶt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\) thì cần cm

\(Σ\frac{a^2}{\left(ab+1\right)^2}=Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{3}{4}\)

\(Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\left(\frac{xz}{y\left(x+z\right)}\right)^2\)

Theo C-S \(Σ\frac{xz}{y\left(x+z\right)}=\frac{\left(xz\right)^2}{xyz\left(x+z\right)}\ge\frac{\left(Σxy\right)^2}{2xy\left(Σx\right)}\ge\frac{3}{2}\)

\(\frac{1}{3}\cdot\left(Σ\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\cdot\frac{9}{4}=\frac{3}{4}\)

Đúng hay ta có ĐPCM xyar ra khi a=b=c=1