Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B O C I P M K Q
a) Đường tròn (O) có đường kính AB và điểm C nằm trên cung AB => ^ACB=900 hay ^PCB=900
Xét tứ giác BCPI: ^PCB=900; ^PIB=900 => Tứ giác BCPI nội tiếp đường tròn (Tâm là trung điểm BP)
b) Xét \(\Delta\)AMB: AC\(\perp\)BM; MI\(\perp\)AB; AC cắt MI tại P => P là trực tâm của \(\Delta\)AMB
Dễ thấy: BK\(\perp\)AM => B;P;K là 3 điểm thẳng hàng (đpcm).
c) Nhận xét: Khi BC=R thì BC=OC=OB=OA => \(\Delta\)ABC là tam giác nửa đều có ^CBA=600
=> ^ACO=300. Do AQ là tiếp tuyến của (O) nên ^ACO+^QCA=900 => ^QCA = 600 (1)
Theo t/c 2 tiếp tuyến cắt nhau => QA=QC (2)
Từ (1) và (2) => \(\Delta\)AQC là tam giác đều => AQ=AC
Dễ có: AC=\(\sqrt{3}R\)=> AQ=\(\sqrt{3}R\)
Xét \(\Delta\)MIB: ^MBI=600; ^MIB=900 => \(\Delta\)MIB là tam giác nửa đều => BI= BM/2
Để ý thấy I là trung điểm OA => BI=3/2R => BM = 2.3/2R = 3R
Dựa vào ĐL Pytagore, ta tính được: \(MI^2=9R^2-\frac{9}{4}R^2=R^2.\left(\frac{36-9}{4}\right)=\frac{R^2.27}{4}\)
\(\Rightarrow MI=\frac{\sqrt{27}.R}{2}\)
\(\Rightarrow S_{QAIM}=\frac{\left(\sqrt{3}R+\frac{\sqrt{27}R}{2}\right).\frac{R}{2}}{2}=\frac{R.\left(\sqrt{3}+\frac{3\sqrt{3}}{2}\right).\frac{R}{2}}{2}\)\(=\frac{R^2.\frac{5\sqrt{3}}{4}}{2}=\frac{5\sqrt{3}.R^2}{8}\)
Vậy \(S_{QAIM}=\frac{5\sqrt{3}.R^2}{8}\).
O A B D E C H P F N M I
a) Ta có \(\sin\widehat{OAB}=\frac{OB}{OA}=\frac{1}{2}\). Suy ra \(\widehat{BAC}=2\widehat{OAB}=60^0\)
Vì AB = AC nên \(\Delta ABC\) đều. Vậy \(BC=AB=OB\sqrt{3}=R\sqrt{3}\)
Gọi I là tiếp điểm của FN với (O). Ta có:
\(\widehat{MON}=\widehat{IOM}+\widehat{ION}=\frac{1}{2}\left(\widehat{IOB}+\widehat{IOC}\right)=\frac{1}{2}\widehat{BOC}=60^0=\widehat{MCN}\)
Suy ra tứ giác MNCO nội tiếp.
b) Theo hệ thức lượng: \(\overline{AH}.\overline{AO}=AB^2=\overline{AD}.\overline{AE}\). Suy ra tứ giác DHOE nội tiếp
Ta thấy \(OD=OE,HO\perp HB\), do đó HO,BC là phân giác ngoài và phân giác trong \(\widehat{DHE}\)
Dễ thấy D và P đối xứng nhau qua OA vì dây cung \(DP\perp OA\)
Vì \(\widehat{DHE}+\widehat{DHP}=2\left(\widehat{DHB}+\widehat{DHA}\right)=180^0\) nên P,H,E thẳng hàng.
c) Do N,O,E thẳng hàng nên \(\widehat{DOE}=180^0-\widehat{MON}=120^0\). Suy ra \(DE=R\sqrt{3}\)
Theo hệ thức lượng thì:
\(AD.AE=AB^2\Rightarrow AD^2+AD.DE=AB^2\)
\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-\left(\frac{AB}{DE}\right)^2=0\)
\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-1=0\) vì \(AB=DE=R\sqrt{3}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{AD}{DE}=\frac{-1+\sqrt{5}}{2}\left(c\right)\\\frac{AD}{DE}=\frac{-1-\sqrt{5}}{2}\left(l\right)\end{cases}}\) vì \(\frac{AD}{DE}>0\)
\(\Rightarrow\frac{AD}{AE}=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{3-\sqrt{5}}{2}.\)
cho tam giác ABC ( AB<AC) có ba góc nhọc nội tiếp đường tròn tâm (O) và D là hình chiếu của B trên AO sao cho D nằm giữa A và O. gọi M là trung điểm của BC, N là giao điểm của BD và AC, F là giao điểm của MD và AC, E là giao điểm thứ hai của BD với (O), H là giao điểm của BF và AD.
1/ chứng minh tứ giác BDOM nội tiếp và góc MOD + NAE=180.
2/ chứng minh DF //CE.
3/ chứng minh CA là tia phân giác của góc BCE
4/ Chứng minh HN vuông góc với AB
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')