Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{ax+by+cz}{xy}=z\Rightarrow z=\frac{a}{y}+\frac{b}{x}+\frac{cz}{xy}>\frac{a}{y}+\frac{b}{x}\)
Tương tự có \(y>\frac{a}{z}+\frac{c}{x}\); \(x>\frac{b}{z}+\frac{c}{y}\)
\(\Rightarrow x+y+z>\frac{b+c}{x}+\frac{a+c}{y}+\frac{a+b}{z}=\frac{b+c}{x}+x+\frac{a+c}{y}+y+\frac{a+b}{z}+z-x-y-z\)
\(\Rightarrow2\left(x+y+z\right)>2\sqrt{b+c}+2\sqrt{a+c}+2\sqrt{a+b}\)
\(\Rightarrow x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
1/ Không mất tính tổng quát, giả sử \(a\ge b\ge c\text{ và }x\ge y\ge z\)
Ta sẽ chứng minh \(ax+by+cz\ge\frac{1}{3}\left(a+b+c\right)\left(x+y+z\right)\)(Thấy giông giống BĐT Chebyshev nhưng không biết có phải không nên ko dám áp dụng, chứng minh cho chắc:D)
\(\Leftrightarrow3ax+3by+3cz\ge\left(a+b+c\right)\left(x+y+z\right)\)
\(\Leftrightarrow2\left(ax+by+cz\right)\ge a\left(y+z\right)+b\left(z+x\right)+c\left(x+y\right)\)
\(\Leftrightarrow\left(2x-y-z\right)a+\left(2y-z-x\right)b+\left(2z-x-y\right)c\ge0\)
\(\Leftrightarrow\left(2x-y-z\right)a-\left[\left(2x-y-z\right)+\left(2z-x-y\right)\right]b+\left(2z-x-y\right)c\ge0\)
\(\Leftrightarrow\left(2x-y-z\right)\left(a-b\right)+\left(2z-x-y\right)\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(a-b\right)+\left(x-z\right)\left(a-c\right)+\left(y-z\right)\left(b-c\right)\ge0\) (Đúng do giả sử)
Như vậy: \(VT\ge\frac{1}{3}\left(a+b+c\right)\left(x+y+z\right)+\sqrt{\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)}\)
\(\ge\frac{1}{3}\left(a+b+c\right)\left(x+y+z\right)+\sqrt{\frac{\left(a+b+c\right)^2\left(x+y+z\right)^2}{9}}=\frac{2}{3}\left(a+b+c\right)\left(x+y+z\right)=VP\)
Ta có đpcm.
Is that true? Em không chắc ở cái bổ đề ban đầu, khi biến đổi có thể làm lộn, nhưng em lại ngại làm kỹ nên em đã làm tắt:v
Bài 1 nếu tự nhiên ép \(x\ge y\ge z \) đồng thời\(a\ge b \ge c\) thì lời giải rất vô duyên. Có thể làm cách khá như sau
Nếu đặt \(t=\sqrt{\frac{x^2+y^2+z^2}{a^2+b^2+c^2}}\) và giả sử \(\left(x,y,z\right)=\left(tp,tq,tr\right)\) thì ta có \(a^2+b^2+c^2=p^2+q^2+r^2\)
Khi đó cần cm \(ap+bq+cr+a^2+b^2+c^2\ge\frac{2}{3}\left(a+b+c\right)\left(p+q+r\right)\)
\(\Leftrightarrow\frac{4}{3}\left(a+b+c\right)\left(p+q+r\right)\le\left(a+p\right)^2+\left(b+q\right)^2+\left(c+r\right)^2\left(\text{*}\right)\)
Dùng bdt \(ab\le\frac{\left(a+b\right)^2}{4}\) và \(\frac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\) ta có:
\(VT\left(\text{*}\right)\le\frac{\left(a+b+c+p+q+r\right)^2}{3}\le\left(a+p\right)^2+\left(b+q\right)^2+\left(c+r\right)^2=VP\left(\text{*}\right)\)
Đầu tiên chứng minh:
\(\left(a^2x+b^2y+c^2z\right)\left(yz+zx+xy\right)\ge xyz\left(a+b+c\right)^2\)
\(=xyz\left(x+z+y\right)^2\ge3xyz\left(xy+yz+zx\right)\)
\(\Rightarrow a^2x+b^2y+c^2z\ge3xyz\)
Tương tự có:
\(x^2a+y^2b+z^2c\ge3abc\)
\(\Rightarrow\) ĐPCM
1b/
Áp dụng BĐT Cô-si :
\(\sqrt{\frac{b+c}{a}}\le\frac{\frac{b+c}{a}+1}{2}=\frac{\frac{a+b+c}{a}}{2}=\frac{a+b+c}{2a}\)
\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)
Chứng minh tương tự:
\(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\); \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
Cộng theo vế ta được :
\(VT\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" không xảy ra nên \(VT>2\).
2a/ Chắc là tính GT của \(x+y\).
\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)
\(\Leftrightarrow\left(x-\sqrt{x^2+2013}\right)\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)
Do vai trò \(x,y\) là như nhau nên thiết lập tương tự ta có :
\(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\)
Cộng theo vế 2 pt ta được :
\(x+y+\sqrt{x^2+2013}+\sqrt{y^2+2013}=\sqrt{x^2+2013}+\sqrt{y^2+2013}-x-y\)
\(\Leftrightarrow2\left(x+y\right)=0\)
\(\Leftrightarrow x+y=0\)
Vậy....
2b/
Đặt \(A=5a^2+15ab-b^2\) và \(B=3a+b\)
Ta có \(B^2=\left(3a+b\right)^2=9a^2+6ab+b^2\)
Lấy \(A+B^2=5a^2+15a-b^2+9a^2+6ab+b^2\)
\(A+B^2=14a^2+21ab\)
\(A+B^2=7\left(2a+3ab\right)⋮7\)
Mà \(A⋮7\) ( vì \(A⋮49\) ) nên \(B^2⋮7\)
Vì 7 nguyên tố nên \(B⋮7\) ( đpcm )
Áp dụng bất đẳng thức Cauchy
\(1+x^3+y^3\ge3\sqrt[3]{x^3y^3}=3xy\)
\(\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Hoàn toàn tương tự :
\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\sqrt{\frac{3}{yz}};\frac{\sqrt{1+z^3+x^3}}{xz}\ge\sqrt{\frac{3}{xz}}\)
Cộng theo vế các bất đẳng thức và thu lại ta được :
\(VT\ge\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\ge3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\)
( Cauchy )
Ta có đpcm
Dấu " = " xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
Cách khác nè bạn
Xét bđt phụ \(a^3+b^3\ge ab\left(a+b\right)\left(a,b>0\right)\)
Thật vậy\(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với a,b>0)
Áp dụng ta có \(x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)
\(\Leftrightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{xy}\sqrt{x+y+z}}{xy}=\sqrt{\frac{x+y+z}{xy}}\)
T tự ta có:\(VT\ge\sqrt{x+y+z}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}+\frac{1}{xy}\right)=\sqrt{x+y+z}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge\sqrt{3\sqrt[3]{xyz}}.3\sqrt[3]{\sqrt{xyz}}=3\sqrt{3}\left(xyz=1\left(gt\right)\right)\)
Ta có :
\(x=\frac{ax}{yz}+\frac{b}{z}+\frac{c}{y}\)
\(y=\frac{a}{z}+\frac{by}{zx}+\frac{c}{x}\)
\(z=\frac{a}{y}+\frac{b}{x}+\frac{xy}{cz}\)
\(\Rightarrow\)\(x+y+z=\left(\frac{ax}{yz}+\frac{by}{zx}+\frac{cz}{xy}\right)+\frac{b+c}{x}+\frac{c+a}{y}+\frac{a+b}{z}>\frac{b+c}{z}+\frac{c+a}{y}+\frac{a+b}{z}\)
\(\ge\frac{\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2}{x+y+z}\)
\(\Leftrightarrow\)\(\left(x+y+z\right)^2>\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\Leftrightarrow\)\(x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\) ( đpcm )