K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\sqrt{\dfrac{25}{16}\cdot\dfrac{49}{9}\cdot\dfrac{1}{100}}=\dfrac{5}{4}\cdot\dfrac{7}{3}\cdot\dfrac{1}{10}=\dfrac{35}{120}=\dfrac{7}{24}\)

b: \(=\sqrt{1.44\cdot0.81}=1.2\cdot0.9=1.08\)

c: \(=\sqrt{\dfrac{\left(165-124\right)\left(165+124\right)}{164}}=\sqrt{\dfrac{1}{4}\cdot289}=\dfrac{17}{2}\)

d: \(=\sqrt{\dfrac{\left(149-76\right)\left(149+76\right)}{\left(457-384\right)\left(457+384\right)}}=\sqrt{\dfrac{225}{841}}=\dfrac{15}{29}\)

31 tháng 3 2017

a) HD: Đổi hỗn số và số thập phân thành phân số.

ĐS: .

b) =

= = =

= .

d) ĐS: .

19 tháng 4 2021

a, \(\frac{\sqrt{2}}{\sqrt{18}}=\sqrt{\frac{2}{18}}=\sqrt{\frac{1}{9}}=\frac{1}{3}\)

b, \(\frac{\sqrt{15}}{\sqrt{735}}=\sqrt{\frac{15}{735}}=\sqrt{\frac{1}{49}}=\frac{1}{7}\)

c, \(\frac{\sqrt{12500}}{\sqrt{500}}=\sqrt{\frac{12500}{500}}=\sqrt{\frac{125}{5}}=\sqrt{25}=5\)

d, \(\frac{\sqrt{6^5}}{\sqrt{2^3.3^5}}=\sqrt{\frac{6^5}{2^3.3^5}}=\sqrt{\frac{2^5.3^5}{2^3.3^5}}=\sqrt{2^2}=2\)

13 tháng 5 2021

a) căn 2 / căn 18 = 1/3

b) căn 15/ căn 735 = 1/7

c) căn 12500 / căn 500 = 5

d) căn 6^5 / 2^3 * 3^5 = 2

19 tháng 4 2021

a, \(\sqrt{\frac{289}{25}}=\frac{\sqrt{289}}{\sqrt{25}}=\frac{17}{5}\)

b, \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\frac{8}{5}\)

c, \(\sqrt{\frac{0,25}{9}}=\frac{\sqrt{0,25}}{\sqrt{9}}=\frac{0,5}{3}=\frac{1}{2}.\frac{1}{3}=\frac{1}{6}\)

d, \(\sqrt{\frac{8,1}{16}}\)đề có sai ko cô ? 

13 tháng 5 2021

a) căn 289 / 225 = 17/15

b) căn 64/ 25 = 8/5

c) căn 0,25 / 9 = 1/6

d) căn 8,1 / 1,6 = 9/4

22 tháng 8 2023

Bài 1: 

a) \(\sqrt{1,44\cdot1,21-1,44\cdot0,4}\)

\(=\sqrt{1,44\cdot\left(1,21-0,4\right)}\)

\(=\sqrt{1,44\cdot0,81}\)

\(=\sqrt{1,44}\cdot\sqrt{0,81}\)

\(=1,2\cdot0,9\)

\(=1,08\)

b) \(\dfrac{\sqrt{5}-2}{\sqrt{5}+2}+\sqrt{80}\)

\(=\dfrac{\left(\sqrt{5}-2\right)^2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+4\sqrt{5}\)

\(=\dfrac{5-4\sqrt{5}+4}{1}+4\sqrt{5}\)

\(=9-4\sqrt{5}+4\sqrt{5}\)

\(=9\)

c) \(\sqrt[3]{16}+\sqrt[3]{2}\left(\sqrt[3]{4}-\sqrt[3]{2}\right)\)

\(=\sqrt[3]{2^3\cdot2}+\sqrt[3]{2\cdot4}-\sqrt[3]{2\cdot2}\)

\(=2\sqrt[3]{2}+\sqrt[3]{8}-\sqrt[3]{4}\)

\(=2\sqrt[3]{2}+2-\sqrt[3]{4}\)

22 tháng 8 2023

Bài 2: Ta có: 

\(VT=\dfrac{1}{\sqrt{a}-\sqrt{b}}:\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}:\dfrac{\sqrt{ab}\cdot\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\cdot\dfrac{1}{\sqrt{a}+\sqrt{b}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}}{\left(a-b\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{1}{a-b}=VP\left(dpcm\right)\)

24 tháng 4 2021

\(\frac{5}{\sqrt{10}}=\frac{5\sqrt{10}}{10}=\frac{\sqrt{10}}{2}\)

\(\frac{5}{2\sqrt{5}}=\frac{10\sqrt{5}}{20}=\frac{\sqrt{5}}{2}\)

\(\frac{1}{3\sqrt{20}}=\frac{3\sqrt{20}}{180}=\frac{\sqrt{20}}{60}=\frac{2\sqrt{5}}{60}=\frac{\sqrt{5}}{30}\)

\(\frac{2\sqrt{2}+2}{5\sqrt{2}}=\frac{10\sqrt{2}\left(\sqrt{2}+1\right)}{50}=\frac{20+10\sqrt{2}}{50}=\frac{10\left(2+\sqrt{2}\right)}{50}=\frac{2+\sqrt{2}}{5}\)

\(\frac{y+b\sqrt{y}}{b\sqrt{y}}=\frac{y\left(\sqrt{y}+b\right)}{by}=\frac{\sqrt{y}+b}{b}\)

24 tháng 4 2021

+ Ta có: 

510=5.1010.10=510(10)2=51010510=5.1010.10=510(10)2=51010

=5.105.2=5.105.2=102=102.

+ Ta có:

525=5.525.5=552.(5.5)=552(5)2525=5.525.5=552.(5.5)=552(5)2

=552.5=52=552.5=52.

+ Ta có:

1320=1.20320.20=203.(20.20)=203.(20)21320=1.20320.20=203.(20.20)=203.(20)2

              =203.20=22.560=2560=252.30=530=203.20=22.560=2560=252.30=530.

+ Ta có:

(22+2)5.2=(22+2).252.2=22.2+2.25.(2)2(22+2)5.2=(22+2).252.2=22.2+2.25.(2)2

                    =2.2+225.2=2(2+2)5.2=2+25=2.2+225.2=2(2+2)5.2=2+25.

+ Ta có:

 y+byby=(y+by).yby.y=yy+by.yb.(y)2y+byby=(y+by).yby.y=yy+by.yb.(y)2

                    =yy+b(y)2by=yy+byby=yy+b(y)2by=yy+byby

                    =y(y+b)b.y=y+bb=y(y+b)b.y=y+bb.

Cách khác:

y+byby=(y)2+bybyy+byby=(y)2+byby=y(y+b)by=y+bb

Nguồn : Bài 50 trang 30 SGK Toán 9 tập 1 - loigiaihay.com

#Ye Chi-Lien

23 tháng 5 2021

a) -17√3/3                                                  b) 11√6 

c) 21                                                            d) 11

29 tháng 5 2021

a)  a) Biến đổi vế trái thành 326+236426326+236−426 và làm tiếp.
b) Biến đổi vế trái thành (6x+136x+6x):6x(6x+136x+6x):6x và làm tiếp

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

(do xy > 0 (gt) nên đưa thừa số xy vào trong căn để khử mẫu)

#Học tốt!!!

17 tháng 5 2021

\(ab\cdot\sqrt{\dfrac{a}{b}}=a\cdot\sqrt{ab}\)

\(\dfrac{a}{b}\cdot\sqrt{\dfrac{b}{a}}=\dfrac{\sqrt{a\cdot b}}{b}\)

\(\sqrt{\dfrac{1}{b}+\dfrac{1}{b^2}}=\dfrac{\sqrt{b+1}}{b}\)

\(\sqrt{\dfrac{9\cdot a^3}{36\cdot b}}=\dfrac{\sqrt{a^3\cdot b}}{2\cdot b}\)

\(3\cdot x\cdot y\cdot\sqrt{\dfrac{2}{x\cdot y}}=3\cdot\sqrt{2\cdot x\cdot y}\)

24 tháng 4 2021

+ Ta có:

2√6−√5=2(√6+√5)(√6−√5)(√6+√5)26−5=2(6+5)(6−5)(6+5)

                   =2(√6+√5)(√6)2−(√5)2=2(√6+√5)6−5=2(6+5)(6)2−(5)2=2(6+5)6−5

                   =2(√6+√5)1=2(√6+√5)=2(6+5)1=2(6+5).

+ Ta có:

3√10+√7=3(√10−√7)(√10+√7)(√10−√7)310+7=3(10−7)(10+7)(10−7)

                    =3(√10−√7)(√10)2−(√7)2=3(10−7)(10)2−(7)2=3(√10−√7)10−7=3(10−7)10−7

                    =3(√10−√7)3=√10−√7=3(10−7)3=10−7.

+ Ta có:

1√x−√y=1.(√x+√y)(√x−√y)(√x+√y)1x−y=1.(x+y)(x−y)(x+y)

=√x+√y(√x)2−(√y)2=√x+√yx−y=x+y(x)2−(y)2=x+yx−y

+ Ta có:

2ab√a−√b=2ab(√a+√b)(√a−√b)(√a+√b)2aba−b=2ab(a+b)(a−b)(a+b)

=2ab(√a+√b)(√a)2−(√b)2=2ab(√a+√b)a−b=2ab(a+b)(a)2−(b)2=2ab(a+b)a−b.

24 tháng 4 2021

\(\frac{2}{\sqrt{6}-\sqrt{5}}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)

\(\frac{3}{\sqrt{10}+\sqrt{7}}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}-\sqrt{7}\right)\left(\sqrt{10}+\sqrt{7}\right)}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\sqrt{10}-\sqrt{7}\)

\(\frac{1}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}+\sqrt{y}}{x-y}\)

\(\frac{2ab}{\sqrt{a}-\sqrt{b}}=\frac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)