K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

 

a) Ta có:

 

K đối xứng với H qua BC

⇒ BC là trung trực của HK

⇒ BH=BK; CH=CK

Xét ΔBHC và ΔBKC có:

BH=BK (cmt)

CH=CK (cmt)

BC: cạnh chung

Do đó ΔBHC = ΔBKC(c.c.c)

b) Ta có:

ˆBHK = ˆBAH + ˆABH (góc ngoài của ΔABH)

ˆCHK = ˆCAH+ ˆACH (góc ngoài của ΔACH)

⇒ ˆBHC = ˆBHK + ˆCHK

= ˆBAH + ˆABH + ˆCAH + ˆACH

= ˆBAC + ˆABH + ˆACH

Ta lại có:

ˆBAC+ˆABH = 90o (BH⊥AC)

ˆBAC+ˆACH = 90o (CH⊥AB)

⇒2ˆBAC+ˆABH+ˆACH=180o

⇒ˆABH+ ˆACH = 180o− 2ˆBAC

Do đó:

ˆBHC =ˆBAC+ 180o− 2ˆBAC= 180o− ˆBAC= 180o−70o = 110o

Mặt khác:

ˆBHC = ˆBKC (ΔBHC = ΔBKC)

⇒ˆBKC=110

a: Ta có: H và K đối xứng nhau qua BC

nên BC là đường trung trực của HK

Suy ra: BH=BK và CH=CK

Xét ΔBHC và ΔBKC có 

BH=BK

BC chung

HC=KC

Do đó: ΔBHC=ΔBKC

21 tháng 4 2017

Hỏi đáp Toán

18 tháng 9 2017

Bài giải:

a) Ox là đường trung trực của AB nên OA = OB.

Oy là đường trung trực của AC nên OA = OC.

Suy ra OB = OC.

b) ∆AOB cân tại O (vì OA = OB).

Suy ra ˆO1O1^= ˆO2O2^= 12ˆAOB12AOB^

∆AOC cân tại O (vì OA = OC)

Suy ra ˆO3O3^= ˆO4O4^= 12ˆAOC12AOC^

Do đó ˆAOBAOB^ +ˆAOCAOC^ = 2(ˆO1O1^+ˆO3O3^)

= 2ˆxOyxOy^

= 2.500

=1000

Vậy ˆBOCBOC^ = 1000



14 tháng 9 2017

Giải :

a, Oxlaf đường trung trực của AB nên OA=OB

Oy là đường trung trực của AC nên OA=OC

=> OB=OC

b, Xét tg AOB cân tại O ( do OA=OB )

=> góc O1= góc O2 = 1/2 góc AOB

Xét tg AOC cân tại o ( vì OA=OC )

=> góc O3 = góc O4 = 1/2 góc AOC

nên góc AOB+ góc AOC= 2 (góc O1+góc O3)

= 2.góc xOy

= 2.50 độ

= 100 độ

Vậy góc BOC = 100 độ

( Hình thì dễ nên bạn tự vẽ nhé )

5 tháng 1 2020

Giải bài 36 trang 87 Toán 8 Tập 1 | Giải bài tập Toán 8

a) + B đối xứng với A qua Ox

⇒ Ox là đường trung trực của AB

⇒ OA = OB (1)

+ C đối xứng với A qua Oy

⇒ Oy là đường trung trực của AC

⇒ OA = OC (2)

Từ (1) và (2) suy ra OB = OC (= OA)

b) + ΔOAC cân tại O có Oy là đường trung trực

⇒ Oy đồng thời là đường phân giác

Giải bài 36 trang 87 Toán 8 Tập 1 | Giải bài tập Toán 8

+ ΔOAB cân tại O có Ox là đường trung trực

⇒ Ox đồng thời là đường phân giác

Giải bài 36 trang 87 Toán 8 Tập 1 | Giải bài tập Toán 8