K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Thay x=1 và y=2 vào (d), ta được:

1(m-1)+m+2=2

=>m-1+m+2=2

=>2m+1=2

=>2m=1

=>\(m=\dfrac{1}{2}\)

Thay m=1/2 vào (d), ta được:

\(y=\left(\dfrac{1}{2}-1\right)x+\dfrac{1}{2}+2=\dfrac{-1}{2}x+\dfrac{5}{2}\)

=>\(\dfrac{1}{2}x-y-\dfrac{5}{2}=0\)

Khoảng cách từ O(0;0) đến (d) là:

\(\dfrac{\left|0\cdot\dfrac{1}{2}+0\cdot\left(-1\right)-\dfrac{5}{2}\right|}{\sqrt{\left(\dfrac{1}{2}\right)^2+\left(-1\right)^2}}=\dfrac{5}{2}:\sqrt{\dfrac{1}{4}+1}\)

\(=\dfrac{5}{2}:\sqrt{\dfrac{5}{4}}=\dfrac{5}{2}:\dfrac{\sqrt{5}}{2}=\sqrt{5}\)

NV
7 tháng 1 2024

Do (d) đi qua M, thay tọa độ M vào pt (d) ta được:

\(2=\left(m-1\right).1+m+2\Rightarrow m=\dfrac{1}{2}\)

Khi đó pt (d) có dạng: \(y=-\dfrac{1}{2}x+\dfrac{5}{2}\)

Gọi A và B lần lượt là giao điểm của (d) với Ox và Oy 

\(y_A=0\Rightarrow-\dfrac{1}{2}x_A+\dfrac{5}{2}=0\Rightarrow x_A=5\Rightarrow OA=\left|x_A\right|=5\)

\(x_B=0\Rightarrow y_B=-\dfrac{1}{2}.0+\dfrac{5}{2}=\dfrac{5}{2}\Rightarrow OB=\left|y_B\right|=\dfrac{5}{2}\)

Gọi H là chân đường vuông góc hạ từ O xuống AB \(\Rightarrow OH\) là k/c từ O tới (d)

Áp dụng hệ thức lượng trong tam giác OAB vuông tại O:

\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{5^2}+\dfrac{1}{\left(\dfrac{5}{2}\right)^2}=\dfrac{1}{5}\)

\(\Rightarrow OH^2=5\Rightarrow OH=\sqrt{5}\)

25 tháng 10 2021

a: Thay x=1 và y=2 vào (d), ta được:

2m+1=2

hay \(m=\dfrac{1}{2}\)

25 tháng 10 2021

Thay x=1 và y=2 vào (d), ta được:

2m+1=2

hay \(m=\dfrac{1}{2}\)

15 tháng 12 2021

\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)

Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua

\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)

Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)

\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

Đặt \(OH^2=t\)

\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)