Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em nghĩ nên sửa đề thành Parabol đi qua điểm (3;3) thì bài toán mới giải được ạ
Parabol đi qua điểm (3;3) nên ta có:
\(3=\left(2m-1\right)\cdot3^2\Rightarrow2m-1=\frac{1}{3}\)
\(\Leftrightarrow2m=\frac{4}{3}\Rightarrow m=\frac{2}{3}\)
Khi đó ta được parabol \(y=\frac{x^2}{3}\)
Đường thẳng song song với trục hoành cắt trục tung tại điểm có tung độ là 4 => y = 4
Khi đó \(4=\frac{x^2}{3}\Rightarrow x^2=12\Rightarrow\orbr{\begin{cases}x=2\sqrt{3}\\x=-2\sqrt{3}\end{cases}}\)
G/s A nằm ở phía dương, B ở phía âm đối với trục hoành thì khi đó tọa độ của A và B là: \(\hept{\begin{cases}A\left(2\sqrt{3};4\right)\\B\left(-2\sqrt{3};4\right)\end{cases}}\)
\(\Rightarrow AB=\left|2\sqrt{3}\right|+\left|-2\sqrt{3}\right|=4\sqrt{3}\)
\(\Rightarrow S_{OAB}=\frac{4\sqrt{3}\cdot4}{2}=8\sqrt{3}\left(dvdt\right)\)
\(\left\{{}\begin{matrix}a\cdot0+b=3\\-2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\a=\dfrac{3}{2}\end{matrix}\right.\)
Gợi ý :
a) y = 2 => x = 2 hoặc -2 ( do có thể < 0 hay > 0 )
b) S(OAB) = 1 => |x| = 1 => x = 1 hoặc -1
c) Gọi khoảng cách từ O tới (d) là OH
OH bé hơn hoặc bằng khoảng cách 2 của O tới điểm cố định trên Oy
=> max = 2 khi d song^2 Ox => x = 0 => đúng mọi m
d) Thay vào biểu thức hệ thức lượng => khoảng cách từ O tới điểm mà d cắt trên Ox là 0 => d trùng Oy
e) thay x vào có kết quả
f) cắt tại điểm > 2 => biểu thức biểu diễn x > 2 ( -2/(m+3) )
Đồ thị hàm số y = ax + b cắt trục tung tại điểm có tung độ là b ; hoàng độ là -b/a
Vì A (4;3 ) thuộc đường thẳng thay x = 4 ; y = 3 vào hàm số ta đc :
3 = 4a + b => - b = 4a - 3 => \(-\frac{b}{a}=4-\frac{3}{a}\)
Theo bài ra ta có -b/a nguyên dương
=> 4 - 3/a nguyên dương => 3/a nguyên
Vì b > 0 => -b < 0 => -b/a > 0 khi a < 0
=> a thuộc ước âm của 3
=> a thuộc { -1 ; -3 }
(+) a = -1 => b = 7 => ta có đường thẳng y = -x + 7
(+) a= -3 ( tương tự )
cho hàm số: y=x2
a) vẽ đồ thị hàm số. ( tự vẽ được)
b) xác định các số a,b sao cho đường thẳng y=ax+b cắt trục tung tại điểm có tung độ bằng 2 và cắt đồ thị hàm số đã cho tại điểm có hoành độ bằng 1
Diện tích tam giác OAB là:
\(S_{OAB}=\dfrac{OA\cdot OB}{2}=\dfrac{3\cdot2}{2}=3\left(đvdt\right)\)
Khoảng cách từ O đến AB là:
\(\dfrac{OA\cdot OB}{AB}=\dfrac{3\cdot2}{\sqrt{OA^2+OB^2}}=\dfrac{6\sqrt{13}}{13}\left(đvđd\right)\)