K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

Đáp án C

Hoành độ các giao điểm của đường thẳng d : y = x + 4  và độ thị hàm số  y = x 3 + 2 m x 2 + ( m + 3 ) x + 4

là nghiệm của PT  x 3 + 2 m x 2 + ( m + 3 ) x + 4 = x + 4 ⇒ x [ x 2 + 2 m x + ( m + 2 ) ] = 0

Điều kiện để tồn tại ba giao điểm là ∆ ' = m 2 - m - 2 = ( m + 1 ) ( m - 2 ) > 0 m + 2 ≢ 0 ⇔ m > 2 m < - 1 ( 1 ) m ≢ - 2  

Khi đó tọa độ ba giao điểm là A(0;4) , B( A ( 0 ; 4 )   ,   B ( x 1 ; 4 + x 1 ) ) và C ( x 2 ; 4 + x 2 ) ⇒ B C → = ( x 2 - x 1 ; x 2 - x 1 )  

Ta có B C = 2 ( x 2 - x 1 ) 2 = 2 x 2 + x 1 2 - 4 x 1 x 2 = 2 2 ( m 2 - m - 2 )  

PT của đt BC là x - y + 4 = 0 ⇒ d M / B C = 1 - 3 + 4 1 2 + 1 2 = 2

 Vậy nên S M B C = 1 2 2 . 2 2 ( m 2 - m - 2 ) = 2 ( m 2 - m - 2 ) = 4 ⇔ m 2 - m - 6 = 0 ⇒ m = - 2 m = 3  

Kết hợp với điều kiện (1)  ⇒ m = 3

24 tháng 8 2019

Đáp án C.

Phương trình có hoành độ giao điểm của d và (C):

x 3 + 2 m x 2 + ( m + 3 ) x + 4 = x + 4 ⇔ x 2 + 2 m x + ( m + 2 ) = 0

Để d cắt (C) tại 3 điểm phân biệt A(0;4) và C thì phương trình (*) phải có hai nghiệm phân biệt x 1 , x 2  khác 0

⇔ 0 2 + 2 m . 0 + m + 2 ≢ 0 ∆ ' = m 2 - m - 2 > 0 ⇔ m + 2 ≢ 0 ( m + 1 ) ( m - 2 ) > 0 ⇔ m ≢ - 2 m > 2 m < - 1 ⇔ m > 2 m < - 1 m ≢ - 2  (1)

Giả sử B x 1 ; x 1 + 4  và B x 2 ; x 2 + 4  với x 1 , x 2  là hai nghiệm của (*)

Suy ra B C = 2 x 1 - x 2  và theo định lí Vi-ét: x 1 + x 2 = - 2 m x 1 x 2 = m + 2  

Ta có S ∆ M B C = 1 2 d ( M ; B C ) . B C = 1 2 . 1 - 3 + 4 2 . 2 x 1 - x 2 = x 1 - x 2  

Từ giả thiết ta có S ∆ M B C = 4 ⇔ x 1 - x 2 = 4 ⇔ x 1 - x 2 2 = 16  

⇔ x 1 + x 2 2 - 4 x 1 x 2 = 16 ⇔ ( - 2 m ) 2 - 4 ( m + 2 ) - 16 = 0 ⇔ 4 m 2 - 4 m - 24 = 0  

m = - 2 m = 3 . Đối chiếu với điều kiện (1), chỉ có m = 3  là thỏa mãn

27 tháng 7 2018

13 tháng 2 2016

khó

13 tháng 2 2016

thế ms hỏi

 

10 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)

\(x=0;x^2+3x+m=0\)(*)

để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0

\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)

từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)

ta tính \(y'=3x^2+6x+m\)

vì tiếp tuyến tại Dvà E vuông góc

suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)

giải pt đối chiếu với đk suy ra đc đk của m

14 tháng 3 2018

Chọn C

26 tháng 1 2016

+TXĐ: X\(\in\)R

+y'=\(3x^2-6x\Rightarrow y'=0\Leftrightarrow\int_{x=2;y=0}^{x=0;y=4}\)

+y''=6(x-1)=> y' = 0 khi x = 1;y=2

+

x       -\(\infty\)                   0                      1                        2                        +\(\infty\)
y'                 +            0           -                           -        0       +
y

 

26 tháng 1 2016

2.  y' = 3x2 - 6x + m <0 khi x thuộc ( -1; 3)  => m/3 =-3 =>  m =-9

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

19 tháng 3 2017