K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Giải bài 99 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Trình tự dựng gồm các bước sau:

- Dựng đoạn thẳng BC = 6cm

- Dựng cung chứa góc 80 trên đoạn thẳng BC (cung BmC).

- Trên đường vuông góc với BC tại I(I là trung điểm BC), chọn điểm K sao cho IK = 2cm. Từ K dựng đường thẳng vuông góc với IK. Đường thẳng này cắt cung chứa góc BmC tại A và A'.

ΔABC (hoặc ΔA'BC) là tam giác thỏa mãn yêu cầu đề bài.

11 tháng 4 2017

Trình tự dựng gồm 3 bước:

- Dựng đoạn thẳng BC = 6cm

- Dựng cung chứa góc 40o trên đoạn thẳng BC.

- Dựng đường thẳng xy song song với BC và cách BC một khoảng là 4cm như sau:

Trên đường trung trực d của đoạn thẳng BC lấy đoạn HH' = 4cm (dùng thước có chia khoảng mm). Dựng đường thẳng xy vuông góc với HH' tại H

Gọi giao điểm xy và cung chứa góc là , . Khi đó tam giác ABC hoặc A'BC đều thỏa yêu cầu của đề toán



11 tháng 4 2017

Trình tự dựng gồm 3 bước:

- Dựng đoạn thẳng BC = 6cm

- Dựng cung chứa góc 40o trên đoạn thẳng BC.

- Dựng đường thẳng xy song song với BC và cách BC một khoảng là 4cm như sau:

Trên đường trung trực d của đoạn thẳng BC lấy đoạn HH' = 4cm (dùng thước có chia khoảng mm). Dựng đường thẳng xy vuông góc với HH' tại H

Gọi giao điểm xy và cung chứa góc là \(\widehat{A}\) , \(\widehat{A'}\). Khi đó tam giác ABC hoặc A'BC đều thỏa yêu cầu của đề toán


Trình tự dựng gồm 3 bước:

- Dựng đoạn thẳng BC = 6cm

- Dựng cung chứa góc 40trên đoạn thẳng BC.

- Dựng đường thẳng xy song song với BC và cách BC một khoảng là 4cm như sau:

Trên đường trung trực d của đoạn thẳng BC lấy đoạn HH' = 4cm (dùng thước có chia khoảng mm). Dựng đường thẳng xy vuông góc với HH' tại H

Gọi giao điểm xy và cung chứa góc là . Khi đó tam giác ABC hoặc A'BC đều thỏa yêu cầu của đề toán

Cách dựng:

+ Dựng đoạn thẳng BC = 6cm.

+ Dựng cung chứa góc 40º trên đoạn thẳng BC (tương tự bài 46) :

Dựng tia Bx sao cho Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

Dựng tia By ⊥ Bx.

Dựng đường trung trực của BC cắt By tại O.

Dựng đường tròn (O; OB).

Cung lớn BC chính là cung chứa góc 40º dựng trên đoạn BC.

+ Dựng đường thẳng d song song với BC và cách BC một đoạn 4cm:

Lấy D là trung điểm BC.

Trên đường trung trực của BC lấy D’ sao cho DD’ = 4cm.

Dựng đường thẳng d đi qua D’ và vuông góc với DD’.

+ Đường thẳng d cắt cung lớn BC tại A.

Ta được ΔABC cần dựng.

Chứng minh:

+ Theo cách dựng có BC = 6cm.

+ A ∈ cung chứa góc 40º dựng trên đoạn BC

Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ A ∈ d song song với BC và cách BC 4cm

⇒ AH = DD’ = 4cm.

Vậy ΔABC thỏa mãn yêu cầu đề bài.

Biện luận: Do d cắt cung lớn BC tại hai điểm nên bài toán có hai nghiệm hình.

20 tháng 10 2022

a: Xét ΔAHB vuông tại H có sin B=AH/AB

nên AB=5,96(cm)

=>BH=2,52(cm)

Xét ΔAHC vuông tại H có sin C=AH/AC

nên AC=7,05(cm)

=>HC=4,53(cm)

BC=2,52+4,53=7,05(cm)

C=7,05+7,05+5,96=20,06(cm)

b: góc A=180-58-40=82 độ

Xét ΔBHA vuông tại H có tan A=BH/HA

nên HA=0,56(cm)

Xét ΔBHC vuông tại H có tan C=BH/HC

nên HC=4,77(cm)

=>AC=5,33(cm)

\(S_{ABC}=\dfrac{5.33\cdot4}{2}=10.66\left(cm^2\right)\)

17 tháng 2 2022

\(\widehat{BAC}=60^0\Rightarrow\widehat{BOC}=120^0\)

\(BC=\sqrt{2R^2-2R^2.\cos120^0}=R\sqrt{3}=2\sqrt{3}\left(cm\right)\)

\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.3.2\sqrt{3}=3\sqrt{3}\left(cm^2\right)\)

25 tháng 4 2019

A B C D E H K O a) Xét tứ giác ADHE có \(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)

Suy ra tứ giác ADHE nội tiếp

Xét tứ giác BEDC có \(\widehat{BDC}=\widehat{BEC}=90^0\)

Suy ra tứ giác BEDC nội tiếp

b) Ta có tứ giác BEDC nội tiếp\(\Rightarrow\widehat{AED}=\widehat{ACB}\)

Xét △ADE và △ABC có

\(\widehat{AED}=\widehat{ACB}\)(cmt)

\(\widehat{A}\) chung

Suy ra △ADE \(\sim\) △ABC(g-g)\(\Rightarrow\frac{DE}{BC}=\frac{AD}{AB}=cos_{\widehat{BAD}}=cos_{45^0}=\frac{\sqrt{2}}{2}\)

c) Vẽ đường kính AOK

Ta có \(\widehat{AED}=\widehat{ACB}\)\(\Leftrightarrow\)\(\widehat{AED}+\widehat{EAO}=\widehat{ACB}+\widehat{BAK}=\frac{sd\stackrel\frown{AB}}{2}+\frac{sd\stackrel\frown{BK}}{2}=\frac{sd\stackrel\frown{AB}+sd\stackrel\frown{BK}}{2}=\frac{sd\stackrel\frown{AK}}{2}=\frac{180^0}{2}=90^0\Rightarrow\)OA⊥DE