\(\dfrac{4x+13}{5x\left(x-7\right)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

a)\(dk,x\ne7;x\ne0\)

\(\frac{4x+13}{5x\left(x-7\right)}-\frac{x-48}{5x\left(7-x\right)}=\frac{4x+13}{5x\left(x-7\right)}+\frac{x-48}{5x\left(x-7\right)}=\frac{\left(4x+13\right)+\left(x-48\right)}{5x\left(x-7\right)}\\ \)

\(=\frac{5x-35}{5x\left(x-7\right)}=\frac{5\left(x-7\right)}{5x\left(x-7\right)}=\frac{1}{x}\)

b)

\(\frac{1}{x-5x^2}-\frac{25x-15}{25x^2-1}=\frac{1}{x\left(1-5x\right)}+\frac{25x-15}{1-\left(5x\right)^2}=\frac{1}{x\left(1-5x\right)}+\frac{25x-15}{\left(1-5x\right)\left(1+5x\right)}\)

\(\frac{1+5x}{x\left(1-5x\right)\left(1+5x\right)}+\frac{x\left(25x-15\right)}{x\left(1-5x\right)\left(1+5x\right)}=\frac{25x^2-15x+5x+1}{x\left(1-5x\right)\left(1+5x\right)}=\frac{25x^2-10x+1}{x\left(1-5x\right)\left(1+5x\right)}\)

30 tháng 11 2018

a, \(\dfrac{4x+13}{5x\left(x-7\right)}-\dfrac{x-48}{5x\left(7-x\right)}\)

\(=\dfrac{4x+13}{5x\left(x-7\right)}+\dfrac{x-48}{5x\left(x-7\right)}\)

\(=\dfrac{4x+13+x-48}{5x\left(x-7\right)}\)

\(=\dfrac{5x-35}{5x\left(x-7\right)}\)

\(=\dfrac{5\left(x-7\right)}{5x\left(x-7\right)}=\dfrac{1}{x}\)

b, \(\dfrac{1}{x-5x^2}-\dfrac{25x-15}{25x^2-1}\)

\(=\dfrac{1}{x\left(1-5x\right)}+\dfrac{25x-15}{\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{1+5x}{x\left(x-5x\right)\left(1+5x\right)}+\dfrac{x\left(25x-15\right)}{x\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{1+5x+25x^2-15x}{x\left(1-5x\right)\left(1+5x\right)}\)\(=\dfrac{25x^2-10x+1}{x\left(1-5x\right)\left(1+5x\right)}=\dfrac{\left(5x-1\right)^2}{x.\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{\left(5x-1\right)^2}{-x\left(5x-1\right)\left(1+5x\right)}\) \(=\dfrac{-\left(5x-1\right)}{x\left(1+5x\right)}\)

b: \(=\dfrac{-1}{x\left(5x-1\right)}-\dfrac{25x-15}{\left(5x-1\right)\left(5x+1\right)}\)

\(=\dfrac{-5x-1-25x^2+15x}{x\left(5x-1\right)\left(5x+1\right)}\)

\(=\dfrac{-25x^2-10x-1}{x\left(5x-1\right)\left(5x+1\right)}=\dfrac{-\left(5x+1\right)}{x\left(5x-1\right)}\)

c: \(=\dfrac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\dfrac{3y}{x\left(x-3y\right)}\)

\(=\dfrac{x^2+9xy-3xy-9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

\(=\dfrac{x^2+6xy-9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

d: \(=\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}+\dfrac{x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{3x^2+4x+1-x^2+2x-1+x^2+2x-3}{\left(x-1\right)^2\cdot\left(x+1\right)}\)

\(=\dfrac{3x^2+8x-3}{\left(x-1\right)^2\cdot\left(x+1\right)}=\dfrac{3x^2+9x-x-3}{\left(x-1\right)^2\cdot\left(x+1\right)}\)

\(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}\)

4 tháng 12 2017

\(\dfrac{1}{x-5x^2}+\dfrac{25x-15}{25x^2-1}\)

\(=\dfrac{1}{x\left(1-5x\right)}+\dfrac{25x-15}{\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{1+5x+x\left(25x-15\right)}{x\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{1+5x+25x^2-15}{x\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{1-10x+25x^2}{x\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{\left(1-5x\right)^2}{x\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{1-5x}{x\left(1+5x\right)}\)

5 tháng 12 2017

\(\dfrac{1}{x-5x^2}-\dfrac{25x-15}{25x^2-1}\)

\(=\dfrac{1}{x-5x^2}+\dfrac{25x-15}{1-25x^2}\)

\(=\dfrac{1}{x\left(1-5x\right)}+\dfrac{25x-15}{\left(1-5x\right)\left(1+5x\right)}\) MTC: \(x\left(1-5x\right)\left(1+5x\right)\)

\(=\dfrac{1+5x}{x\left(1-5x\right)\left(1+5x\right)}+\dfrac{x\left(25x-15\right)}{x\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{1+5x+x\left(25x-15\right)}{x\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{1+5x+25x^2-15x}{x\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{25x^2-10x+1}{x\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{\left(5x-1\right)^2}{x\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{\left(1-5x\right)^2}{x\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{1-5x}{x\left(1+5x\right)}\)

28 tháng 6 2017

Phép nhân các phân thức đại số

21 tháng 4 2017

Giải bài 43 trang 54 Toán 8 Tập 1 | Giải bài tập Toán 8

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

29 tháng 9 2018

a.\(\dfrac{5\left(x-3\right)}{4\left(x+1\right)}\) : \(\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x+1\right)^2}\)

= \(\dfrac{5\left(x-3\right)}{4\left(x+1\right)}\). \(\dfrac{\left(x+1\right)^2}{\left(x-3\right)\left(x+3\right)}\)

= \(\dfrac{5\left(x+1\right)}{4\left(x+3\right)}\)

b. \(\dfrac{6\left(x+8\right)}{7\left(x-1\right)}\). \(\dfrac{\left(x-1\right)^2}{\left(x-8\right)\left(x+8\right)}\)

= \(\dfrac{6\left(x-1\right)}{7\left(x-8\right)}\)

c.Tương tự hai câu trên nka!!

d. (\(\dfrac{1}{x\left(x+1\right)}\)-\(\dfrac{2-x}{x+1}\)).(\(\dfrac{x}{x-1}\))

=( \(\dfrac{1}{x\left(x+1\right)}\)-\(\dfrac{2x-x^2}{x\left(x+1\right)}\)). ....

= \(\dfrac{\left(1-x\right)^2}{x\left(x+1\right)}\). ...

= \(\dfrac{x-1}{x+1}\)

29 tháng 9 2018

Lê Cẩm TúThiên ThảoPhạm Thái DươnMai LinhgGuyoSky SơnTùngKhôi Bùi Mysterious PersonPhong ThầnPhùng Khánh Linhtran nguyen baNguyễn Xuân Sángo quanDƯƠNG PHAN KHDũng NguyễnÁNH DƯƠNGlê thị hương giang

6 tháng 2 2018

1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)

ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )

\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)

vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn