K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a)

\(\begin{array}{l}\sin {168^o}45'33'' = 0,195;\\\cos {17^o}22'35'' = 0,954;\\\tan {156^o}26'39'' =  - 0,436;\\\cot {56^o}36'42'' = 0,659\end{array}\)

b)

i) \(\alpha  = {59^o}32'30,8''.\)

ii) \(\alpha  = {124^o}32'28,65''.\)

iii) \(\alpha  = {18^o}28'9,55''.\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cos \alpha \) ta có:

\(\cos \alpha  = \frac{{ - \sqrt 2 }}{2}\) với \(\alpha  = {135^o}\)

b) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\sin \alpha \) ta có:

\(\sin \alpha  = 0\) với \(\alpha  = {0^o}\) và \(\alpha  = {180^o}\)

c) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\tan \alpha \) ta có:

\(\tan \alpha  = 1\) với \(\alpha  = {45^o}\)

d) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cot \alpha \) ta có:

\(\cot \alpha \) không xác định với \(\alpha  = {0^o}\) hoặc \(\alpha  = {180^o}\) 

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\sin \alpha \) ta có:

\(\sin \alpha  = \frac{{\sqrt 3 }}{2}\) với \(\alpha  = {60^o}\) và \(\alpha  = {120^o}\)

b) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cos \alpha \) ta có:

\(\cos \alpha  = \frac{{ - \sqrt 2 }}{2}\) với \(\alpha  = {135^o}\)

c) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\tan \alpha \) ta có:

\(\tan \alpha  =  - 1\) với \(\alpha  = {135^o}\)

d) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cot \alpha \) ta có:

\(\cot \alpha  =  - \sqrt 3 \) với \(\alpha  = {150^o}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) 

Trên nửa đường tròn đơn vị, lấy điểm M sao cho \(\widehat {xOM} = \alpha \)

Gọi H, K lần lượt là các hình chiếu vuông góc của M trên Ox, Oy.

 

Ta có: tam giác vuông OHM vuông tại H và \(\alpha  = \widehat {xOM}\)

Do đó: \(\sin \alpha  = \frac{{MH}}{{OM}} = MH;\;\cos \alpha  = \frac{{OH}}{{OM}} = OH.\)

\( \Rightarrow {\cos ^2}\alpha  + {\sin ^2}\alpha  = O{H^2} + M{H^2} = O{M^2} = 1\)

b) Ta có:

\(\begin{array}{l}\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}.\\ \Rightarrow \;\tan \alpha .\cot \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\end{array}\)

c) Với \(\alpha  \ne {90^o}\) ta có:

\(\begin{array}{l}\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\\ \Rightarrow \;1 + {\tan ^2}\alpha  = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\;\end{array}\)

d) Ta có:

\(\begin{array}{l}\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }};\;\\ \Rightarrow \;1 + {\cot ^2}\alpha  = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }}\;\end{array}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có:  \(\left\{ \begin{array}{l}\sin {100^o} = \sin \left( {{{180}^o} - {{80}^o}} \right) = \sin {80^o}\\\cos {164^o} = \cos \left( {{{180}^o} - {{16}^o}} \right) =  - \cos {16^o}\end{array} \right.\)

\( \Rightarrow \sin {100^o} + \sin {80^o} + \cos {16^o} + \cos {164^o}\)\( = \sin {80^o} + \sin {80^o} + \cos {16^o}-\cos {16^o}\)\( = 2\sin {80^o}.\)

b) 

Ta có:

\(\left\{ \begin{array}{l}\sin \left( {{{180}^o} - \alpha } \right) = \sin \alpha \\\cos \left( {{{180}^o} - \alpha } \right) =  - \cos \alpha \\\tan \left( {{{180}^o} - \alpha } \right) =  - \tan \alpha \\\cot \left( {{{180}^o} - \alpha } \right) =  - \cot \alpha \end{array} \right.\quad ({0^o} < \alpha  < {90^o})\)\( \Rightarrow 2\sin \left( {{{180}^o} - \alpha } \right).\cot \alpha  - \cos \left( {{{180}^o} - \alpha } \right).\tan \alpha .\cot \left( {{{180}^o} - \alpha } \right)\) \( = 2\sin \alpha .\cot \alpha  - \left( { - \cos \alpha } \right).\tan \alpha .\left( { - \cot \alpha } \right)\)\( = 2\sin \alpha .\cot \alpha  - \cos \alpha .\tan \alpha .\cot \alpha \)

\( = 2\sin \alpha .\frac{{\cos \alpha }}{{\sin \alpha }} - \cos \alpha .\left( {\tan \alpha .\cot \alpha } \right)\)\( = 2\cos \alpha  - \cos \alpha .1 = \cos \alpha .\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a)

\(\begin{array}{l}\cos {80^o}43'51'' = 0,161;\\\tan {147^o}12'25'' =  - 0,644;\\\cot {99^o}9'19'' =  - 0,161\end{array}\)

b) \(\alpha  = {136^o}18'9,81''.\)

24 tháng 9 2023

Tham khảo:

a) 

Gọi M(x;y) là điểm trên đường tròn đơn vị sao cho \(\widehat {xOM} = \alpha \). Gọi N, P tương ứng là hình chiếu vuông góc của M lên các trục Ox, Oy.

Ta có: \(\left\{ \begin{array}{l}x = \cos \alpha \\y = \sin \alpha \end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\cos ^2}\alpha  = {x^2}\\{\sin ^2}\alpha  = {y^2}\end{array} \right.\)(1)

Mà \(\left\{ \begin{array}{l}\left| x \right| = ON\\\left| y \right| = OP = MN\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x^2} = {\left| x \right|^2} = O{N^2}\\{y^2} = {\left| y \right|^2} = M{N^2}\end{array} \right.\)(2)

Từ (1) và (2) suy ra \({\sin ^2}\alpha  + {\cos ^2}\alpha  = O{N^2} + M{N^2} = O{M^2}\) (do \(\Delta OMN\) vuông tại N)

\( \Rightarrow {\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) (vì OM =1). (đpcm)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

b) 

Ta có:  \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}\;\;(\alpha  \ne {90^o})\)

\( \Rightarrow 1 + {\tan ^2}\alpha  = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }}\)

Mà theo ý a) ta có \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) với mọi góc \(\alpha \)

\( \Rightarrow 1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\) (đpcm)

c) 

Ta có:  \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}\;\;\;({0^o} < \alpha  < {180^o})\)

\( \Rightarrow 1 + {\cot ^2}\alpha  = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }}\)

Mà theo ý a) ta có \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) với mọi góc \(\alpha \)

\( \Rightarrow 1 + {\cot ^2}\alpha  = \frac{1}{{{{\sin }^2}\alpha }}\) (đpcm)

24 tháng 9 2023

\(P=\dfrac{2sin\alpha-3cos\alpha}{3sin\alpha+2cos\alpha}\\ =\dfrac{\dfrac{2sin\alpha}{cos\alpha}-\dfrac{3cos\alpha}{cos\alpha}}{\dfrac{3sin\alpha}{cos\alpha}+\dfrac{2cos\alpha}{cos\alpha}}\\ =\dfrac{2tan\alpha-3}{3tan\alpha+2}=\dfrac{2.3-3}{3.3+2}=\dfrac{3}{11}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\quad (\alpha  \ne {90^o})\)

\( \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = 1 + {3^2} = 10\)

\( \Leftrightarrow {\cos ^2}\alpha  = \frac{1}{{10}} \Leftrightarrow \cos \alpha  =  \pm \frac{{\sqrt {10} }}{{10}}\)

Vì \({0^o} < \alpha  < {180^o}\) nên \(\sin \alpha  > 0\).

Mà \(\tan \alpha  = 3 > 0 \Rightarrow \cos \alpha  > 0 \Rightarrow \cos \alpha  = \frac{{\sqrt {10} }}{{10}}\)

Lại có: \(\sin \alpha  = \cos \alpha .\tan \alpha  = \frac{{\sqrt {10} }}{{10}}.3 = \frac{{3\sqrt {10} }}{{10}}.\)

\( \Rightarrow P = \dfrac{{2.\frac{{3\sqrt {10} }}{{10}} - 3.\frac{{\sqrt {10} }}{{10}}}}{{3.\frac{{3\sqrt {10} }}{{10}} + 2.\frac{{\sqrt {10} }}{{10}}}} = \dfrac{{\frac{{\sqrt {10} }}{{10}}\left( {2.3 - 3} \right)}}{{\frac{{\sqrt {10} }}{{10}}\left( {3.3 + 2} \right)}} = \dfrac{3}{{11}}.\)

22 tháng 10 2023

\(90^0< a< 180^0\)

=>\(cosa< 0\)

\(sin^2a+cos^2a=1\)

=>\(cos^2a=1-\left(\dfrac{1}{3}\right)^2=\dfrac{8}{9}\)

mà cosa<0

nên \(cosa=-\dfrac{2\sqrt{2}}{3}\)

\(tan\left(180^0-a\right)=-tana=-\dfrac{sina}{cosa}\)

\(=-\dfrac{1}{3}:\dfrac{-2\sqrt{2}}{3}=\dfrac{1}{2\sqrt{2}}=\dfrac{\sqrt{2}}{4}\)

AH
Akai Haruma
Giáo viên
21 tháng 2 2019

Bạn xem lại biểu thức A. Biểu thức $A$ sau khi rút gọn thì \(A=\frac{-2\sin ^2a}{3\cos 2a}\) vẫn phụ thuộc vào $a$

------------

Sử dụng công thức: \(\sin (90-a)=\cos a; \cot (90-a)=\tan a\), ta có:

\(B=\tan ^260(\sin ^8a-\cos ^8a)+4\cos 60(\cos ^6a-\sin ^6a)-\cos ^6a(\tan ^2a-1)^3\)

\(=3(\sin ^8a-\cos ^8a)+2(\cos ^6a-\sin ^6a)-\cos ^6a\left(\frac{\sin ^2a}{\cos ^2a}-1\right)^3\)

\(=3(\sin ^8a-\cos ^8a)+2(\cos ^6a-\sin ^6a)-(\sin ^2a-\cos ^2a)^3\)

\(=3(\sin ^2a-\cos ^2a)(\sin ^2a+\cos ^2a)(\sin ^4a+\cos ^4a)+2(\cos ^2a-\sin ^2a)(\cos ^4a+\sin ^2a\cos ^2a+\sin ^4a)-(\sin ^2a-\cos ^2a)^3\)

\(=3(\sin ^2-\cos ^2a)(\sin ^4a+\cos ^4a)-2(\sin ^2a-\cos ^2a)(\cos ^4a+\sin ^2a\cos ^2a+\sin ^4a)-(\sin ^2a-\cos ^2a)^3\)

\(=(\sin ^2a-\cos ^2a)[3(\sin ^4a+\cos ^4a)-2(\cos ^4a+\sin ^2a\cos ^2a+\sin ^4a)-(\sin ^2a-\cos ^2a)^2]\)

\(=(\sin ^2a-\cos ^2a).0=0\). Do đó giá trị của biểu thức không phụ thuộc vào $a$

8 tháng 7 2023

Giải câu a đi ạ