K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

Giải bài 1 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

* Dựng hình:

   - Dựng tam giác ADC có AD = 2cm, DC = 4cm, CA = 5cm.

   - Dựng tia Ax song song với CD.

   - Đường tròn (C; 3cm) cắt Ax tại B1 và B2.

Hình thang ABCD với B ≡ B1 hoặc B ≡ B2 là hình thang cần dựng.

* Chứng minh

   + Tứ giác ABCD có AD = 2cm, DC = 4cm, CA = 5cm.

   + Ax // CD ⇒ AB // CD ⇒ ABCD là hình thang.

   + B ∈ (C; 3cm) ⇒ BC = 3cm.

24 tháng 4 2017

Giải bài 1 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

Dựng đoạn thẳng CD = 4cm.

- Dựng hai đường tròn (C, 5cm) và (D, 2cm) cắt nhau tại A.

- Dựng đường tròn (C, 2cm) và đường tròn (A, 4cm) cắt nhau tại B.

Đường thẳng AB kéo dài cắt đường tròn (C, 2cm) tại điểm B' (ngoài điểm B đã kể ở trên)

Các tứ giác ABCD và AB'CD là những hình thang thỏa mãn đề bài.

Chứng minh: Vì B thuộc đường tròn (A, 4cm) nên AB = 4cm.

ΔABC = ΔDCA (AB = CD = 4cm, AD = BC = 2cm, AC chung) do đó góc BAC = góc DCA là cặp so le trong ta có: AB // CD.

Tứ giác ABCD có AB // CD, AD = 2cm, CD = 4cm, BC = 2cm là hình thang thỏa mãn yêu cầu, AB'CD cũng là hình thang thỏa mãn yêu cầu vì AB' // CD, AD = 2cm, CD = 4cm, CB' = 2cm.

7 tháng 11 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn bài toán.

Ta thấy ∆ ADC xác định được vì biết AD = 2cm,  ∠ D =  90 0 , DC = 4cm. Ta cần xác định đỉnh B. Đỉnh B thỏa mãn hai điều kiện:

- B nằm trên tia Ax//CD

- B cách C một khoảng bằng 3cm

Cách dựng:

- Dựng ΔADC biết:

AD = 2cm,  ∠ D =  90 0 , DC = 4cm

- Dựng Ax ⊥ AD

- Dựng cung tròn tâm C bán kính bằng 3cm, cắt Ax tại B.

Nối BC ta có hình thang ABCD dựng được.

Chứng minh:

Thật vậy theo cách dựng, ta có: AB // CD ,  ∠ D =  90 0

Tứ giác ABCD là hình thang vuông

Lại có AD = 2cm, CD = 4cm, BC = 3cm

Hình thang dựng được thỏa mãn điều kiện bài toán.

Biện luận: ∆ ADC dựng được, hình thang ABCD luôn dựng được.

Bài toán có hai nghiệm hình.

Kẻ BH//AD(H∈CD)BH//AD(H∈CD), kẻ BD

Ta có:

+) AB//CD (hình thang ABCD)

⇒B2ˆ=D1ˆ⇒B2^=D1^ ( 2 góc so le trong )

+) BH//AD (cách vẽ)

⇒D2ˆ=B1ˆ⇒D2^=B1^ ( 2 góc so le trong)

Xét ΔDABΔDAB và ΔBHDΔBHD, ta có:

B2ˆ=D1ˆ(cmt)B2^=D1^(cmt)

BD : chung

D2ˆ=B1ˆ(cmt)D2^=B1^(cmt)

⇒⇒ ΔDABΔDAB = ΔBHDΔBHD (gcg)

⇒AD=BH⇒AD=BH

mà AD=3cm(gt)AD=3cm(gt)

⇒BH=3cm⇒BH=3cm

+) ΔDABΔDAB = ΔBHDΔBHD (cmt)

⇒AB=DH⇒AB=DH

mà AB=4cm(gt)AB=4cm(gt)

⇒DH=4cm⇒DH=4cm

+) DH+HC=DC(H∈DC)DH+HC=DC(H∈DC)

⇒4+HC=8⇒4+HC=8

⇒HC=4cm⇒HC=4cm

Xét ΔBHC,ΔBHC, ta có:

52=32+4252=32+42

⇒BC2=BH2+HC2⇒BC2=BH2+HC2 (Định lý Py-ta-go)

⇒ΔBHC⇒ΔBHC vuông tại H

⇒H1ˆ=900⇒H1^=900

+) AD//BH

⇒ADHˆ=H1ˆ⇒ADH^=H1^ (2 góc động vị)

⇒ADHˆ=900⇒ADH^=900

⇒⇒ Hình thang ABCD là hình thang vuông

Bạn ơi 900 là 90 độ nha

29 tháng 6 2017

Dựng hình bằng thước và compa. Dựng hình thang