Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VP=√(x^2-4x+4)=|x-2|
dt hai nua dt (d1): y=2-x; (x<2);
(d2): y=x-2 (x≥2)
VT: (d3): y=x-3
(d3) nam phia duoi (d1) &(d2) =>VT>VP=>dpcm
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
\(\frac{x^2}{x-1}=\frac{x^2-1+1}{x-1}=\frac{\left(x-1\right)\left(x+1\right)+1}{x-1}=x+1+\frac{1}{x-1}=x-1+\frac{1}{x-1}+2\)
Do \(x>1\) nên \(x-1>0;\frac{1}{x-1}>0\) Áp dụng bất đẳng thức Cauchy ta có :
\(x-1+\frac{1}{x-1}\ge2\sqrt{\left(x-1\right).\frac{1}{x-1}}=2\)
\(\Rightarrow x-1+\frac{1}{x-1}+2\ge4\) hay \(\frac{x^2}{x-1}\ge4\) có GTNN là 4
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
Ta có \(\frac{x^2}{x-1}=\frac{x^2-1}{x-1}+\frac{1}{x-1}=x+1+\frac{1}{x-1}\)+2. Áp dụng cosi cho 2 số x+1 và 1/x-1 ta có x+1+1/x-1\(\ge\)2\(\sqrt{\left(x-1\right)\frac{1}{x-1}}=1\), suy ra biểu thức \(\ge\)3, vậy giá trị nn =3 khi x-1=1/x-1, đến đó bn giải tìm x nha