K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

Tra bảng ta được :

a) \(x\approx2,25\) (thực ra \(2,25\) là giá trị đúng)

b) \(x\approx4,623\)

c) \(x\approx0,2704\)

d) \(x\approx0,001444\)

25 tháng 9 2018

Sử dụng bảng căn bậc hai, thử lại các kết quả bằng cách tra bảng căn bậc hai cho các kết quả vừa tìm được.

a: x=2,25

b: x=4,6225

c: x=0,2704

c: x=361/250000

30 tháng 5 2017

Căn bậc hai. Căn bậc ba

15 tháng 10 2016

1/\(\sqrt{24-x^2}-\sqrt{8-x^2}=2\)

\(\Rightarrow2A=\left(\sqrt{24-x^2}+\sqrt{8-x^2}\right)\left(\sqrt{24-x^2}-\sqrt{8-x^2}\right)\)

\(\Leftrightarrow2A=16\Rightarrow A=8\)

2/ ĐKXĐ : \(x\ge5\)

\(\sqrt{x-2}+\sqrt{x-5}=\sqrt{x+3}\)

\(\Rightarrow\left(\sqrt{x-2}+\sqrt{x-5}\right)^2=x+3\)

\(\Leftrightarrow2x+2\sqrt{x-2}.\sqrt{x-5}-7=x+3\)

\(\Rightarrow2\sqrt{x-2}.\sqrt{x-5}=10-x\)

\(\Leftrightarrow4\left(x-2\right)\left(x-5\right)=x^2-20x+100\)

\(\Leftrightarrow3x^2-8x-60=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-\frac{10}{3}\end{cases}}\)

\(x\ge5\) nên x = 6 thỏa mãn đề bài.

17 tháng 7 2019

a) <=? |(x-1/4)| = 1/4-x

Th1: x >= 1/4 => x - 1/4 = 1/4 - x

<=> 2x = 2.1/4 <=> x = 1/4(nhân)

Th2: x<1/4 => -x + 1/4 = 1/4-x

<=> 0x = 0

<=> x thuộc R và x <1/4.

Vậy S ={x|x<=1/4}

17 tháng 7 2019

\(\text{a)}\sqrt{x^2-\frac{1}{2}x+\frac{1}{16}}=\frac{1}{4}-x\)

\(\Leftrightarrow\sqrt{x^2-2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2}=\frac{1}{4}-x\)

\(\Leftrightarrow\sqrt{\left(x-\frac{1}{4}\right)^2}=\frac{1}{4}-x\)

\(\Leftrightarrow x-\frac{1}{4}=\frac{1}{4}-x\)

\(\Leftrightarrow2x=\frac{1}{2}\)

\(\Leftrightarrow x=\frac{1}{4}\)

\(\text{b)}\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\)

\(ĐKXĐ:x\ge-2\)

\(\Leftrightarrow\left(\sqrt{x-2\sqrt{x-1}}\right)^2=\left(\sqrt{x-1}-1\right)^2\)

\(\Leftrightarrow x-2\sqrt{x-1}=\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}+1\)

\(\Leftrightarrow x-2\sqrt{x-1}=x-1-2\sqrt{x-1}+1\)

\(\Leftrightarrow x-2\sqrt{x-1}-x+2\sqrt{x-1}=-1+1\)

\(\Leftrightarrow0x=0\)

Vậy \(S=\left\{x\inℝ|x\ge-2\right\}\)

26 tháng 9 2016

1/ Điều kiện xác định \(x\ge0\)

\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

\(\Leftrightarrow\left(\frac{\sqrt{x}}{2}-\frac{\sqrt{x}}{3}-\sqrt{x}\right)=\frac{1}{2}+\frac{2}{3}-1\)

\(\Leftrightarrow-\frac{5}{6}\sqrt{x}=\frac{1}{6}\Leftrightarrow\sqrt{x}=-\frac{1}{5}\) (vô lí)

Vậy pt vô nghiệm

2/ \(x-\left(\sqrt{x}-4\right)\left(\sqrt{x}-5\right)=-38\)

\(\Leftrightarrow x-\left(x-9\sqrt{x}+20\right)+38=0\)

\(\Leftrightarrow9\sqrt{x}=-18\Leftrightarrow\sqrt{x}=-2\) (vô lí)

Vậy pt vô nghiệm.

26 tháng 9 2016

1)\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

Đặt \(a=\sqrt{x}-1\) ta  đc:

\(\frac{a}{2}-\frac{a+3}{3}=a\)\(\Leftrightarrow\frac{a-6}{6}=a\)

\(\Leftrightarrow a-6=6a\)\(\Leftrightarrow a=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}-1=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}=-\frac{1}{5}\)

=>vô nghiệm (vì \(\sqrt{x}\ge0>-\frac{1}{5}\))

 

11 tháng 10 2020

Bài 1:

\(\frac{x-9}{\sqrt{x}+3}+\frac{2\sqrt{x}-6}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}+\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)

\(=\sqrt{x}-3+2=\sqrt{x}-1\)

Bài 2:

a) Không rõ đề

b) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(\Leftrightarrow\left|x-3\right|=\sqrt{3}+1\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=\sqrt{3}+1\\x-3=-\sqrt{3}-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4+\sqrt{3}\\x=2-\sqrt{3}\end{cases}}\)

11 tháng 8 2020

a) ĐKXĐ: x \(\ge\)0; x \(\ne\)4; x \(\ne\)9

Ta có: \(P=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\left(\sqrt{x}+1\right)}{x-5\sqrt{x}+6}\)

\(P=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{x-4-x+2\sqrt{x}+3-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-4+2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{2}{\sqrt{x}-3}\)

b) Ta có: P < -1 <=> \(\frac{2}{\sqrt{x}-3}< -1\) <=> \(\frac{2}{\sqrt{x}-3}+1< 0\)

<=> \(\frac{2+\sqrt{x}-3}{\sqrt{x}-3}< 0\) <=> \(\frac{\sqrt{x}-1}{\sqrt{x}-3}< 0\)

TH1: \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}-3>0\end{cases}}\) <=> \(\hept{\begin{cases}x< 1\\x>9\end{cases}}\)(loại)

TH2: \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}-3< 0\end{cases}}\) <=> \(\hept{\begin{cases}x>1\\x< 9\end{cases}}\)

Kết hợp vs đk => S = {x|1  < x < 9 và x \(\ne\)4}

c) Để P nguyên <=> 2 \(⋮\)\(\sqrt{x}-3\) <=> \(\sqrt{x}-3\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Lập bảng: tự làm

11 tháng 8 2020

@Edogawa Conan phân số thứ 2 bạn bị sai rồi \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)=x+2\sqrt{x}-3\)

trước phân số là dấu "-" phải đổi dấu