K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2021

a) \(9+4\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2=\left(\sqrt{5}+2\right)^2\)

b) \(23-8\sqrt{7}=4^2-2.4.\sqrt{7}+\left(\sqrt{7}\right)^2=\left(4-\sqrt{7}\right)^2\)

c) \(4-2\sqrt{3}=\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2=\left(\sqrt{3}-1\right)^2\)

d) \(11+6\sqrt{2}=3^2+2.3.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(3+\sqrt{2}\right)^2\)

a) \(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)

b) \(23-8\sqrt{7}=\left(4-\sqrt{7}\right)^2\)

c) \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

d) \(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)

9 tháng 8 2017

a)

\(3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}^2\right)+2\times\sqrt{2}\times1=\left(\sqrt{2}+1\right)^2\)

mấy câu còn lại tương tự

29 tháng 7 2018

a/ 3 + 2\(\sqrt{2}\) = 2 + 2\(\sqrt{2}\) + 1 = \(\sqrt{2}^2\) + 2\(\sqrt{2}\) + 12 = ( \(\sqrt{2}\) + 1 )2

b/ 3 - \(\sqrt{8}\) = 2 - \(\sqrt{4.2}\) + 1 = 2 - 2\(\sqrt{2}\) + 1 = \(\sqrt{2}^2\) - 2\(\sqrt{2}\) + 12

= ( \(\sqrt{2}\) - 1 )2

c/ 9 + 4\(\sqrt{5}\) = 4 + 2.2\(\sqrt{5}\) + 5 = 22 + 2.2\(\sqrt{5}\) + \(\sqrt{5}\)2

= ( 2 + \(\sqrt{5}\) )2

d/ 23 - 8\(\sqrt{7}\) = 16 - 2.4.\(\sqrt{7}\) + 7 = 42 - 2.4.\(\sqrt{7}\) + \(\sqrt{7}^2\)

= ( 4 - \(\sqrt{7}\) )2

13 tháng 5 2018

a)\(\sqrt{13-4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{12-2.2\sqrt{3}.1+1}+\sqrt{4-2.2.\sqrt{3}+3}\)

\(=\sqrt{\left(2\sqrt{3}-1\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left|2\sqrt{3}-1\right|+\left|2-\sqrt{3}\right|\)

\(=2\sqrt{3}-1+2-\sqrt{3}=\sqrt{3}+1\)

b)\(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5+2\sqrt{5}.1+1}+\sqrt{5-2\sqrt{5}.1+1}\)

\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left(\sqrt{5}+1\right)+\left(\sqrt{5}-1\right)=2\sqrt{5}\)

c)\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3+2\sqrt{3}.1+1}-\sqrt{3-2\sqrt{3}.1+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)=2\)

d)\(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{4+2.2\sqrt{3}+3}+\sqrt{4-2.2.\sqrt{3}+3}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)=4\)

e)\(\sqrt{9+4\sqrt{5}}=\sqrt{5+2.\sqrt{5}.2+4}=\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{5}+2\)

f)\(\sqrt{23+8\sqrt{7}}=\sqrt{16+2.4.\sqrt{7}+7}=\sqrt{\left(4+\sqrt{7}\right)^2}=4+\sqrt{7}\)

31 tháng 5 2018

1)d) \(\sqrt{23+8\sqrt{7}}-\sqrt{7}\)

\(=\sqrt{4^2+2.4.\sqrt{7}+\sqrt{7^2}}-\sqrt{7}\)

\(=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

\(=4+\sqrt{7}-\sqrt{7}\)

\(=4\)

28 tháng 8 2018

a) \(\sqrt{9-4\sqrt{5}}+\sqrt{5}\)

=\(\sqrt{\left(\sqrt{2}\right)^2-2.2\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{5}\)

=\(\sqrt{\left(\sqrt{2}-\sqrt{5}\right)^2}+\sqrt{5}\)

=\(\left|\sqrt{2}-\sqrt{5}\right|+\sqrt{5}\)

=\(\sqrt{2}-\sqrt{5}+\sqrt{5}\)

=\(\sqrt{2}\)

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)

\(=2+\sqrt{3}-2+\sqrt{3}\)

\(=2\sqrt{3}\)

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)

\(=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)

\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)

\(=3+2\sqrt{2}+3-2\sqrt{2}\)

\(=6\)

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)

\(=2+\sqrt{5}-\sqrt{5}+2\)

\(=4\)

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)

\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)

\(=1+\sqrt{5}-\sqrt{5}+1\)

\(=2\)

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(A=\sqrt{3}+2+2-\sqrt{3}\)

A = 2 + 2

A = 4

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(B=\sqrt{2}+3+3-\sqrt{2}\)

B = 3 + 3

B = 6

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(C=3+2\sqrt{2}+3-2\sqrt{2}\)

C = 3 + 3

C = 6

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(D=\sqrt{5}+2-\sqrt{5}+2\)

D = 2 + 2

D = 4

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(E=\sqrt{5}+1-\sqrt{5}+1\)

E = 1 + 1

E = 2