K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Số mũ cao nhất của hàm số là 2, suy ra biểu thức\(f\left( x \right)\)đã cho là đa thức bậc hai

b) Thay \(x = 2\) vào \(f\left( x \right)\) ta có:

\(f\left( 2 \right) =  - {2^2} + 2 + 3 = 1 > 0\)

Suy ra \(f\left( 2 \right)\) dương.

3 tháng 5 2017

a) Txđ: D =\(\left[1998;+\infty\right]\)
b) \(f\left(2002\right)=620000\) con.
\(g\left(1999\right)=380000\) con.
\(h\left(2000\right)=100000\) con.
c) \(h\left(1999\right)=30000\) con; \(h\left(2002\right)=210000\).
\(h\left(2002\right)-h\left(1999\right)=210000-30000=180000\).
Ý nghĩa: Hiệu \(h\left(2002\right)-h\left(1999\right)\) thể hiện sự tăng trưởng sản lượng ngan qua giai đoạn 1999 - 2002.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Hệ số a là: a=1

\(f(0) = {0^2} - 4.0 + 3 = 3\)

\(f(1) = {1^2} - 4.1 + 3 = 0\)

\(f(2) = {2^2} - 4.2 + 3 =  - 1\)

\(f(3) = {3^2} - 4.3 + 3 = 0\)

\(f(4) = {4^2} - 4.4 + 3 = 3\)

=> f(0); f(4) cùng dấu với hệ số a; f(2) khác dấu với hệ số a

b) Nhìn vào đồ thị ta thấy

- Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành

c) - Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành => f(x)>0, cùng dầu với hệ số a

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành => f(x) <0, khác dấu với hệ số a

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành => f(x)>0, cùng dấu với hệ số a

Bạn xem lại đề

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Quan sát đồ thị:

điểm \(\left( {1; - 2} \right)\) (tức là có x =1; y=-2) thuộc đồ thị.

điểm \(\left( {2; - 1} \right)\) (tức là có x=2; y=-1) thuộc đồ thị hàm số.

điểm (0;0) không thuộc đồ thị hàm số.

b) Từ điểm trên Ox: \(x = 0\) ta kẻ đường thẳng song song với Oy ta được: \(f\left( 0 \right) =  - 1\)

Từ điểm trên Ox: \(x = 3\) ta kẻ đường thẳng song song với Oy ta được: \(f\left( 3 \right) = 0\)

c) Giao điểm của đồ thị và trục Ox là điểm \(\left( {3;0} \right)\).

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có vectơ \(\overrightarrow {OM} \)  biểu diễn theo hai vectơ \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) là: \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right)\)

b) Do tọa độ hai điểm A và B là: \(A\left( {{x_A},{y_A}} \right),B\left( {{x_B},{y_B}} \right)\) nên ta có:\(\overrightarrow {OA}  = \left( {{x_A},{y_A}} \right),\overrightarrow {OB}  = \left( {{x_B},{y_B}} \right)\)

Vậy \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) = \frac{1}{2}\left( {{x_A} + {x_B};{y_A} + {y_B}} \right) = \left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)

Tọa độ điểm M chính là tọa độ của vectơ nên tọa độ M  là \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)

7 tháng 4 2017

a) F(x) = \(-x^2\left(x-1\right)\left(x+2\right)\left(x+2\right)=\left(1-x\right)x^2\left(x+2\right)^2\\ \)

\(\left\{{}\begin{matrix}x^2\ge0\\\left(x+2\right)^2\ge0\end{matrix}\right.\) => dấu biểu thức chỉ phụ thuộc vào thừa số (1-x)

F(x) =0 khi x={-2,0,1}

F(x) > 0 khi x<1 và khác -2 và 0

f(x) <0 khi x> 1

7 tháng 4 2017

Tử f(x) =x^2(x^2-3x+2) =x^2(x-1)(x-2)

tương tự a) dấu của tử phụ thuộc (x-1)(x-2)

Mẫu f(x) =x^2 -x-30 =(x-5)(x+6)

Phần hỗ trợ Lập bảng đây khó thao tác

=> viết bằng hệ {điểm tới hạn xet x={-6,0,1,2,5}

Khi => \(\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)=>f(x) =0

Khi \(\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\) => f(x) không xác định

Khi \(x< -6\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\)\(\Rightarrow f\left(x\right)>0\)

khi -6<x<1 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0

khi 1<x<2 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)< 0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) >0

khi 2<x<5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0

khi x>5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\) => f(x) >0

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Biểu thức \(f\left( x \right) = 2{x^2} + x - 1\) là một tam thức bậc hai

          \(f\left( 1 \right) = {2.1^2} + 1 - 1 = 2 > 0\) nên \(f\left( x \right)\) dương tại \(x = 1\)

b) Biểu thức \(g\left( x \right) =  - {x^4} + 2{x^2} + 1\) không phải là một tam thức bậc hai

c) Biểu thức \(h\left( x \right) =  - {x^2} + \sqrt 2 .x - 3\) là một tam thức bậc hai

          \(h\left( 1 \right) =  - {1^2} + \sqrt 2 .1 - 3 = \sqrt 2  - 4 < 0\) nên \(h\left( x \right)\) âm tại \(x = 1\)