Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài vạnh1, cạnh2, cạnh 3, lần lượt là a, b, c( ĐK: a,b , c>0)
Theo đề bài, ta có : a/2=b/3=c/4 và a+b-c=20
Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)
Gỉa sử x,y,z tỉ lệ thuận với 3 ;5;7 ta có: x 3 = y 5 = z 7
Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 20
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x 3 = y 5 = z 7 = x + y − z 3 − 5 + 7 = 20 5 = 4
Do đó x = 4.3 = 12
Vậy cạnh nhỏ nhất của tam giác là 12m
Đáp án cần chọn là B
Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)
Gỉa sử x,y,z tỉ lệ thuận với 3;4;5 ta có: x 3 = y 4 = z 5
Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 16
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x 3 = y 4 = z 5 = x + y − z 3 − 4 + 5 = 16 4 = 4
Do đó x = 4.3 = 12
Vậy cạnh nhỏ nhất của tam giác là 12m
Đáp án cần chọn là B
a, Gọi độ dài các cạnh của tam giác đó là a,b,c ( a,b,c thuộc N*,cm)
Theo đề ra: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và a+b+c=45 (cm)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{45}{15}=3\)
\(\frac{a}{3}=3\Rightarrow a=9\)
\(\frac{b}{5}=3\Rightarrow b=15\)
\(\frac{c}{7}=3\Rightarrow c=21\)
Vậy độ dài các cạnh của tam giác đó là: 9cm, 15cm,21cm
b,Gọi độ dài các cạnh của tam giác đó là a,b,c ( a,b,c thuộc N*,cm)
cạnh lớn nhất là c, cạnh nhỏ nhất là a
Theo đề ra: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và \(c+a-b=20\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{c+a-b}{7+3-5}=\frac{20}{5}=4\)
\(\frac{a}{3}=4\Rightarrow a=12\)
\(\frac{b}{5}=4\Rightarrow b=20\)
\(\frac{c}{7}=4\Rightarrow c=28\)
Vậy độ dài các cạnh của tam giác đó là: 12cm,20cm,28cm
Cho cạnh bé nhất là 3 phần, cạnh lớn nhất 7 phần, cạnh còn lại 5 phần
Tổng cạnh bé nhất và cạnh lớn nhất hơn cạnh còn lại : (3 + 7) - 5 = 5 (phần)
1 phần tương ứng với : 20 : 5 = 4 (cm)
Độ dài cạnh bé nhất là : 4 . 3 = 12 (cm)
Độ dài cạnh lớn nhất là : 4 . 7 = 28 (cm)
Độ dài cạnh còn lại là : 4 . 5 = 20 (cm)
Các cạnh `x,y,z` tỉ lệ với `2,4,5 => x:y:z=2:4:5 <=> x/2=y/4=z/5`
Tổng độ dài của cạnh lớn nhất và nhỏ nhất hơn cạnh còn lại `20cm`
`=> z+x=y+20<=>x-y+z=20`
Áp dụng tính chất của dãy tỉ số bằng nhau:
`x/2=y/4=z/6=(x-y+z)/(2-4+6)=20/4=5`
`=>x=2.5=10`
`y=4.5=20`
`z=5.5=25`
Vậy...
Gọi 33 cạnh của tam giác đó lần lượt là x;y;z(cm,0<x<y<z)x;y;z(cm,0<x<y<z).
Theo bài ra ta có: x/2=y/4=z/5 và x+z−y=20
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x/2=y/4=z/5=x+z−y/2+5−4=20/3
x/2=20/3⇒x=403(tm)
y/4=20/3⇒y=80/3(tm)
z/5=20/3⇒z=100/3(tm)
Vậy độ dài 33 cạnh của tam giác đó lần lượt là: 403cm;803cm;1003cm403cm;803cm;1003cm.
tick cho mình nha!
Giải:
Gọi 3 cạnh của tam giác ABC lần lượt là a, b, c ( a > b > c > 0 )
Ta có: \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\) và a - c = 10
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a-c}{5-3}=\frac{10}{2}=5\)
+) \(\frac{a}{5}=5\Rightarrow a=25\)
+) \(\frac{b}{4}=5\Rightarrow b=20\)
+) \(\frac{c}{3}=5\Rightarrow c=15\)
Vậy 3 cạnh của tam giác lần lượt là 15 cm, 20 cm và 25 cm
Gọi độ dài các cạnh của tam giác lần lượt là a , b , c (theo thứ tự nhỏ đến lớn)
Theo đề bài , ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c + 10 = a + b
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{c+10}{7}\)
=> \(\frac{c+10}{7}=\frac{c}{5}\)
=> 5(c + 10) = 7c
=> 5c + 50 = 7c
=> 50 = 2c
=> c = 25
=> a + b = 25 + 10 = 35
Áp dụng tính chất dãy tỉ số , ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{35}{7}=5\)
=> a = 3.5 = 15
b = 4.5 = 20
I don't now
mik ko biết
sorry
......................