Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Định lí Pytago được sử dụng cho loại tam giác vuông
*Vẽ hình
Hệ thức: \(BC^2=AB^2+AC^2\)
Dùng phản chứng:
- Giả sử AC < A'C'. Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.
Giả sử AC = A'C'. Khi đó ta có ΔABC = ΔA'B'C' (c.g.c). Suy ra BC = B'C'.
Điều này cũng không đúng với giả thiết BC > B'C'. Vậy ta phải có AC > A'C'.
(Nếu sử dụng định lý Pytago thì có thể giải bài toán sau)
Trong tam giác vuông ABC có BC 2= AB 2+ AC 2 (1)
Trong tam giác vuông A'B'C' có B'C' 2= A'B' 2+ A'C' 2 (2)
Theo giả thiết AB = A'B' nên từ (1) và (2) ta có:
- Nếu AC > A'C' thì AC 2 > A'C' 2, suy ra BC 2 > B'C' 2 hay BC > B'C'
- Nếu BC > B'C' thì BC 2 > B'C' 2, suy ra AC 2 > A'C' 2 hay AC > A'C'.
Mình làm câu 1 trước, vừa làm vừa nêu hướng dẫn giải vì các câu sau làm tương tự.
Bước 1: Xét tam giác, lấy bình phương của cạnh lớn nhất.
Xét \(\Delta ABC\)có \(AC^2=\left(\sqrt{5}\right)^2=5\)
Kế tiếp ta xét tổng các bình phương của hai cạnh còn lại:
Lại có \(AB^2+BC^2=1^2+2^2=1+4=5\)
Cuối cùng, xét xem kết quả của 2 phép tính trên có bằng nhau hay không. Theo định lý Pytago đảo, nếu binh phương cạnh lớn nhất mà bằng tổng các bình phương 2 cạnh còn lại thì tam giác đó vuông. (tại đỉnh đối diện với cạnh lớn nhất), nếu không bằng thì không phải tam giác vuông.
\(\Rightarrow AC^2=AB^2+BC^2\left(=5\right)\)
\(\Rightarrow\Delta ABC\)vuông tại B
Tổng ba góc trong 1 tam giác bằng 180 độ
GT | ΔABC |
KL | góc A+góc B+góc C=180 độ |
Định lý Pytago được sử dụng cho loại tam giác vuông.
_Bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh còn lại.
CÔNG THỨC :
\(^{a^2+b^2=c^2}\) (với c là độ dài cạnh huyền và a và b là độ dài hai cạnh góc vuông hay còn gọi là cạnh kề.)
k cho mk nha!Hok tốt !!!
Hình vẽ bạn tự thêm điểm nha!