K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mệnh đề này đúng là bởi vì 12 là bội chung của cả 2 và 3

cho nên khi n chia hết cho 12 thì chắc chắn n sẽ chia hết cho 2 và 3

 

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Với n = 32, ta có các mệnh đề P, Q khi đó là:

P: “Số tự nhiên 32 chia hết cho 16”;

Q: “Số tự nhiên 32 chia hết cho 8”;

Mệnh đề P ⇒ Q: “Nếu số tự nhiên 32 chia hết cho 16 thì số tự nhiên 32 chia hết cho 8”.

Đây là mệnh đề đúng vì 32 chia hết cho 16 và 8.

b) Với n = 40, ta có các mệnh đề P, Q khi đó là:

P: “Số tự nhiên 40 chia hết cho 16”;

Q: “Số tự nhiên 40 chia hết cho 8”;

Mệnh đề đảo của mệnh đề P ⇒ Q là mệnh đề Q ⇒ P: “Nếu số tự nhiên 40 chia hết cho 8 thì số tự nhiên 40 chia hết cho 16”.

Mệnh đề đảo này là mệnh đề sai. Vì 40 chia hết cho 8 nhưng 40 không chia hết cho 16.

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

a. Đúng, vì $9\vdots 3$ nên $n\vdots 9\Rightarrow n\vdots 3$

b. Sai. Vì cho $n=2\vdots 2$ nhưng $2\not\vdots 4$

c. Đúng, theo định nghĩa tam giác cân

d. Sai. Hình thang cân là 1 phản ví dụ.

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

e.

Sai. Cho $m=-1; n=-2$ thì $m^2< n^2$

f.

Đúng, vì $a\vdots c, b\vdots c$ nên trong $ab$ có chứa nhân tử $c$

g.

Sai. Hình bình hành là hình thang có 2 cạnh bên bằng nhau nhưng không phải hình thang cân.

 

AH
Akai Haruma
Giáo viên
20 tháng 9 2023

Lời giải:
$n^3-n=n(n^2-1)=n(n-1)(n+1)$ là tích của 3 số nguyên liên tiếp nên luôn chia hết cho $3$

Do đó mệnh đề $P$ đúng.

CÁC BẠN GIẢI JUP MIK VỚI !! :))Bài 1: Xét tính đúng sai của các mệnh đề sau:a) Phương trình có hai nghiệm phân biệt.b) 2k là số chẵn. (k là số nguyên bất kì)c) 211 – 1 chia hết cho 11.Bài 2: Cho tứ giác ABDC: Xét hai mệnh đềP: Tứ giác ABCD là hình vuông.Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính...
Đọc tiếp

CÁC BẠN GIẢI JUP MIK VỚI !! :))

Bài 1: Xét tính đúng sai của các mệnh đề sau:

a) Phương trình có hai nghiệm phân biệt.

b) 2k là số chẵn. (k là số nguyên bất kì)

c) 211 – 1 chia hết cho 11.

Bài 2: Cho tứ giác ABDC: Xét hai mệnh đề

P: Tứ giác ABCD là hình vuông.

Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.

Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính đúng sai của các mệnh đề đó.

Bài 3: Cho mệnh đề chứa biến P(n): n2 – 1 chia hết cho 4 với n là số nguyên. Xét tính đúng sai của mệnh đề khi n = 5 và n = 2.

Bài 4: Nêu mệnh đề phủ định của các mệnh đề sau:

Bài tập mệnh đề toán học lớp 10

Bài 5: Xét tính đúng sai và nêu mệnh đề phủ định của các mệnh đề:

a) Tứ giác ABCD là hình chữ nhật.

b) 16 là số chính phương.

Bài tập mệnh đề toán học lớp 10

Bài 6: Cho tứ giác ABCD và hai mệnh đề:

P: Tổng 2 góc đối của tứ giác bằng 1800;

Q: Tứ giác nội tiếp được đường tròn.

Hãy phát biểu mệnh đề kéo theo P => Q và xét tính đúng sai của mệnh đề này.

Bài 7: Cho hai mệnh đề

P: 2k là số chẵn.

Q: k là số nguyên

Hãy phát biểu mệnh đề kéo theo và xét tính đúng sai của mệnh đề.

Bài 8: Hoàn thành mệnh đề đúng:

Tam giác ABC vuông tại A nếu và chỉ nếu ...................

- Viết lại mệnh đề dưới dạng một mệnh đề tương đương.

Bài 9: Xét tính đúng sai của các mệnh đề và viết mệnh đề phủ định của các mệnh đề.

Bài tập mệnh đề toán học lớp 10

Bài 10: Xét tính đúng sai của các suy luận sau: (mệnh đề kéo theo)

Bài tập mệnh đề toán học lớp 10

Bài 11: Phát biểu điều kiện cần và đủ để một:

  • Tam giác là tam giác cân.
  • Tam giác là tam giác đều.
  • Tam giác là tam giác vuông cân.
  • Tam giác đồng dạng với tam giác khác cho trước.
  • Phương trình bậc 2 có hai nghiệm phân biệt.
  • Phương trình bậc 2 có nghiệm kép.
  • Số tự nhiên chia hết cho 2; cho 3; cho 5; cho 6; cho 9 và cho 11.

Bài 12: Chứng mình rằng: Với hai số dương a, b thì a + b ≥ 2√ab.

Bài 13: Xét tính đúng sai của mệnh đề:

Nếu một số tự nhiên chia hết cho 15 thì chia hết cho cả 3 và 5.

Bài 14: Phát biểu và chứng minh định lí sau:

a) n là số tự nhiên, n2 chia hết cho 3 thì n cũng chia hết cho 3.

b) n là số tự nhiên, n2 chia hết cho 6 thì n cũng chia hết cho cả 6; 3 và 2.

(Chứng minh bằng phản chứng)

1
17 tháng 8 2022

A

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Thay : “số tự nhiên n chia hết cho 6” bới P, “số tự nhiên n chia hết cho 3” bởi  Q, ta được mệnh đề R có dạng: “Nếu P thì Q”

HQ
Hà Quang Minh
Giáo viên
31 tháng 7 2023

Các số n thỏa mãn là bội của 12 và nhỏ hơn 50

Vậy \(n\in\left\{0;12;24;36;48\right\}\)

22 tháng 2 2019

(P⇒Q) đúng, (Q⇒P) sai.