K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc OMA=1/2*sđ cung OA=90 độ

góc ONA=1/2*sđ cung OA=90 độ

Vì góc OMA=góc ONA=góc MAN=90 độ

nên AMON là hình chữ nhật

b: ΔOAB cân tại O

mà OM là đường cao

nên Mlà trung điểm của AB

ΔOAC cân tại O

mà ON là đường cao

nên N là trung điểm của AC

Xet ΔACB có AM/AB=AN/AC

nên MN//BC

 

Bài 1: Cho (O;R) và một điểm M. Hãy chỉ dùng thước thẳng dựng đường thẳng đi qua M và vuông góc với đường kính AB cho trước (đường kính AB không đi qua M).Bài 2: Cho (O;R) và (O’;R’) cùng trực giao với đường tròn (C;r). Chứng minh trục đẳng phương của hai đường tròn (O;R) và (O’;R’) đi qua điểm C.Bài 3: Cho A không thuộc (O;R). O’ di động trên (O;R), đường thằng a là trục đẳng phương...
Đọc tiếp

Bài 1: Cho (O;R) và một điểm M. Hãy chỉ dùng thước thẳng dựng đường thẳng đi qua M và vuông góc với đường kính AB cho trước (đường kính AB không đi qua M).

Bài 2: Cho (O;R) và (O’;R’) cùng trực giao với đường tròn (C;r). Chứng minh trục đẳng phương của hai đường tròn (O;R) và (O’;R’) đi qua điểm C.

Bài 3: Cho A không thuộc (O;R). O’ di động trên (O;R), đường thằng a là trục đẳng phương của hai đường tròn (O;R) và (O’;O’A). Chứng minh khoảng cách từ A đến đường thẳng a là không đổi.

Bài 4: Cho góc xOy = 45 độ. A là một điểm thuộc miền trong của góc đó. Bằng thước và compa hãy dựng đường thẳng đi qua A cắt Ox, Oy lần lượt tại M, N sao cho A là trung điểm của MN.

Bài 5: Cho góc xAy, hai điểm B, C lần lượt thay đổi trên các tia Ax, Ay sao cho AB+AC=d không đổi. Từ A kẻ đường thẳng song song với BC, cắt đường tròn ngoại tiếp tam giác ABC tại M. Tìm quỹ tích điểm M.

Bài 6: Cho nửa (T) đường kính AB, hai nửa đường thẳng Ax, By nằm cùng một phía và tiếp xúc với (T). Lấy hai điểm di động M thuộc Ax, N thuộc By sao cho ABMN có diện tích S không đổi. Tìm quỹ tích hình chiếu trung điểm I của AB trên MN.

Bài 7: Cho ∆ABC, các điểm M, N lần lượt thuộc AB, AC sao cho MN // BC. Xác định trục đẳng phương của 2 đường tròn đường kính BN và CM.

1
25 tháng 12 2015

chia nhỏ ra thôi . Nhiều này nhìn hoa mắt làm sao nổi.

15 tháng 11 2015

c) Gọi giao điểm của BM với Ax là I. Từ M kẻ MK vuông góc với AB. BC cắt MK tại E.

Vì MK vuông góc AB => MK // AC // BD

EK // AC => \(\frac{EK}{AC}=\frac{BE}{BC}\); ME // IC => \(\frac{ME}{IC}=\frac{BE}{BC}\) => \(\frac{EK}{AC}=\frac{ME}{IC}\)

Tam giác MIA vuông tại M có CA = CM => góc CAM = góc CMA => góc CIM = góc CMI => tam giác CMI cân tại C => CI = CM => CM = CI = CA => EK = ME.

\(EK=ME\Rightarrow\frac{EK}{BD}=\frac{ME}{BD}\)mà \(\frac{ME}{BD}=\frac{CM}{CD}=\frac{AK}{AB}\Rightarrow\frac{EK}{BD}=\frac{AK}{AB}\)

=> Tam giác AKE đồng dạng với tam giác ABD (c.g.c) => góc EAK = góc DAK => A,E,D thẳng hàng => BC cắt AD tại E mà theo giả thiết BC cắt AD tại N => E trùng với N => H trùng với K => N là trung điểm MH.

 

29 tháng 5 2021

A B C H M N

a, Vì HM là đường cao => \(HM\perp AB\)=> ^HMA = 900

Vì HN là đường cao => \(HN\perp AC\)=> ^HNA = 900

Xét tứ giác AMHN có : 

^HMA + ^HNA = 900

mà ^HMA ; ^HNA đối nhau 

Vậy tứ giác AMHN nội tiếp

29 tháng 5 2021

b, Xét tam giác ABH vuông tại H, đường cao HM ta có : 

\(AH^2=AM.AB\)(1)

Xét tam giác ACH vuông tại H, đường cao HN ta có : 

\(AH^2=AN.AC\)(2) 

từ (1) ; (2) suy ra : \(AM.AB=AN.AC\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)

Xét tam giác AMN và tam giác ACB ta có : 

^A chung 

\(\frac{AM}{AC}=\frac{AN}{AB}\)( cmt )

Vậy tam giác AMN ~ tam giác ACB ( c.g.c )