K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho phương trình $x^2-2(m+1)x + m^2 - 1 = 0$ (1) ($x$ là ẩn số, $m$ là tham số). a. Giải phương trình (1) với $m = 7$. b. Xác định các giá trị của $m$ để phương trình (1) có hai nghiệm $x_1,$ $x_2$ sao cho biểu thức $M = x_1^2 + x_2^2 - x_1x_2$ đạt giá trị nhỏ nhất. 2. Bài toán có nội dung thực tế: Một nhà máy theo kế hoạch phải sản xuất $2100$ thùng nước sát khuẩn trong một thời gian quy định (số...
Đọc tiếp

1. Cho phương trình $x^2-2(m+1)x + m^2 - 1 = 0$ (1) ($x$ là ẩn số, $m$ là tham số).

a. Giải phương trình (1) với $m = 7$.

b. Xác định các giá trị của $m$ để phương trình (1) có hai nghiệm $x_1,$ $x_2$ sao cho biểu thức $M = x_1^2 + x_2^2 - x_1x_2$ đạt giá trị nhỏ nhất.

2. Bài toán có nội dung thực tế:

Một nhà máy theo kế hoạch phải sản xuất $2100$ thùng nước sát khuẩn trong một thời gian quy định (số thùng nước sát khuẩn nhà máy phải sản xuất trong mỗi ngày là bằng nhau). Để đẩy nhanh tiến độ công việc trong giai đoạn tăng cường phòng chống đại dịch COVID-19, mỗi ngày nhà máy đã sản xuất nhiều hơn dự định 35 thùng nước sát khuẩn. Do đó, nhà máy đã hoàn thành công việc trước thời hạn 3 ngày. Hỏi theo kế hoạch, mỗi ngày nhà máy phải sản xuất bao nhiêu thùng nước sát khuẩn?

28
8 tháng 4 2021

Bài 1 : 

a, Thay m = 7 vào phương trình trên ta được : 

\(x^2-2.8x+49-1=0\)

\(\Leftrightarrow x^2-16x+48=0\)

Ta có : \(\Delta=\left(-16\right)^2-4.48=64\)

\(\Rightarrow x_1=\frac{16-8}{2}=4;x_2=\frac{16+8}{2}=12\)

b, \(x^2-2\left(m+1\right)x+m^2-1=0\)

ta có : \(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2-1\right)=\left(2m+2\right)^2-4m^2+4\)

\(=4m^2+8m-4m^2+4=8m+4\)

Để phương trình có 2 nghiệm thì \(\Delta\ge0\)hay \(8m+4\ge0\Leftrightarrow m\ge-1\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2-1\end{cases}}\)

mà \(x_1+x_2=2m+2\Leftrightarrow\left(x_1+x_2\right)^2=4m^2+8m+4\)

\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2=4m^2+8m+4-2m^2+2=2m^2+8m+6\)

\(M=2m^2+8m+6-m^2+1=m^2+8m+7\)

\(=m^2+8m+16-9=\left(m+4\right)^2-9\)

Do \(m\ge-1\)nên \(m+4\ge3\)

Suy ra  \(M=\left(m+4\right)^2-9\ge9-9=0\)

Vậy GTNN M là 0 khi m = -1 

10 tháng 5 2021

 140 thùng /1ngày

16 tháng 2 2019

https://h.vn/hoi-dap/tim-kiem?q=m%E1%BB%99t+t%E1%BB%95+c%C3%B4ng+nh%C3%A2n+theo+k%E1%BA%BF+ho%E1%BA%A1ch+ph%E1%BA%A3i+l%C3%A0m+120+s%E1%BA%A3n+ph%E1%BA%A9m+trong+m%E1%BB%99t+th%E1%BB%9Di+gian+nh%E1%BA%A5t+%C4%91%E1%BB%8Bnh+nh%C6%B0ng+khi+th%E1%BB%B1c+hi%E1%BB%87n+n%C4%83ng+su%E1%BA%A5t+c%E1%BB%A7a+t%E1%BB%95+%C4%91%C3%A3+v%C6%B0%E1%BB%A3t+n%C4%83ng+su%E1%BA%A5t+d%E1%BB%B1+%C4%91%E1%BB%8Bnh+l%C3%A0+10+s%E1%BA%A3n+ph%E1%BA%A9m+.+do+%C4%91%C3%B3+t%E1%BB%95+%C4%91%C3%A3+ho%C3%A0n+th%C3%A0nh+c%C3%B4ng+vi%E1%BB%87c+s%E1%BB%9Bm+h%C6%A1n+d%E1%BB%B1+%C4%91%E1%BB%8Bnh+m%E1%BB%99t+ng%C3%A0y+t%C3%ADnh+xem+th%E1%BB%B1c+t%E1%BA%BF+m%E1%BB%97i+ng%C3%A0y+t%E1%BB%95+%C4%91%C3%A3+l%C3%A0m+%C4%91%C6%B0%E1%BB%A3c+bao+nhi%C3%AAu+s%E1%BA%A3n+ph%E1%BA%A9m&id=230647

5 tháng 6 2015

Gọi x là sản ppham xưởng sản xuất trong 1 ngày theo kế  hoạch (x>0)

=>Số ngày theo kế hoạch là :\(\frac{110}{x}\)

Số ngày thực tế là \(\frac{1100}{x+5}\)theo gia thiet cua bai toan ta co :

\(\frac{1100}{x}-\frac{1100}{x+5}=2\)

<=>1100(x+5)-1100x=2x(x+5)

<=>2x^2+10x-5500=0

<=>x=50hay x=-55 loai

​Vậy theo kế hoạch mỗi ngày phân xưởng phải sản xuất là 50 sản phẩm

28 tháng 7 2020

Gọi số sản phẩm mà phân xưởng làm trong 1 ngày là x ( x > 0 )

=> Số ngày quy định = \(\frac{1100}{x}\)( ngày )

Mỗi ngày phân xưởng sản xuất vượt mức 5 sản phẩm

=> Số ngày hoàn thành = \(\frac{1100}{x+5}\)( ngày )

Vì thế kế hoạch hoàn thành sớm hơn quy định 2 ngày

=> Ta có phương trình : \(\frac{1100}{x}-\frac{1100}{x+5}=2\)

                               \(\Leftrightarrow\frac{1100\left(x+5\right)}{x\left(x+5\right)}-\frac{1100\cdot x}{x\left(x+5\right)}=\frac{2x\left(x+5\right)}{x\left(x+5\right)}\)

                               \(\Leftrightarrow1100x+5500-1100x=2x^2+10x\)

                               \(\Leftrightarrow2x^2+10x-1100x-5500+1100x=0\)

                               \(\Leftrightarrow2x^2+10x-5500=0\)

\(\Delta'=b'^2-ac=5^2-2\cdot\left(-5500\right)=25+11000=11025\)

\(\Delta'>0\)nên phương trình đã cho có hai nghiệm phân biệt :

\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-5+\sqrt{11025}}{2}=50\\x_2=\frac{-b-\sqrt{\Delta'}}{a}=\frac{-5-\sqrt{11025}}{2}=-55\end{cases}}\)

x > 0 => x = 50

Vậy theo kế hoạch , mỗi ngày phân xưởng sản xuất 50 sản phẩm

21 tháng 6 2021

gọi số sản phẩ mỗi ngày là x(sản phẩm)(0<x<1100,x\(\in N\))

gọi thời gian làm dự định là y(ngày)(y>0)

=>hệ pt:\(\left\{{}\begin{matrix}xy=1100\\y-\dfrac{1100}{x+5}=2\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}y=\dfrac{1100}{x}\\\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\left(1\right)\end{matrix}\right.\)

*giải pt(1)\(=>\left\{{}\begin{matrix}x=50\left(TM\right)\\x=-55\left(loai\right)\end{matrix}\right.\) 

Vậy....

21 tháng 6 2021

Gọi số sản phẩm họ làm trong 1 ngày theo kế hoạch là x

Gọi số sản phẩm họ làm trong 1 ngày thực tế là y

(sản phẩm/ngày; x; y \(\in N\)*)

Do thực tế, mỗi ngày họ vượt mức 5 sản phẩm => Ta có phương trình:

y - x = 5 (1)

Thời gian họ sản xuất theo kế hoạch là \(\dfrac{1100}{x}\) (ngày)

Thời gian họ sản xuất thực tế là \(\dfrac{1100}{y}\) (ngày)

Do phân xưởng đó hoàn thành kế hoạch sớm hơn 2 ngày => Ta có phương trình:

\(\dfrac{1100}{x}-\dfrac{1100}{y}=2\)

<=> \(\dfrac{1100y-1100x-2xy}{xy}=0\)

<=> \(1100\left(y-x\right)-2xy=0\)

<=> \(5500-2xy=0\)

<=> \(xy=2750< =>x=\dfrac{2750}{y}\)

Thay x = \(\dfrac{2750}{y}\) vào phương trình (1), ta có:

\(y-\dfrac{2750}{y}=5\)

<=> \(y^2-5y-2750=0\)

<=> (y-55)(y+50) = 0

<=> \(\left[{}\begin{matrix}y=55\left(c\right)\\y=-50\left(l\right)\end{matrix}\right.\)

<=> x = 50 (c)

Theo kế hoạch, mỗi ngày phân xưởng sản xuất được 50 sản phẩm

23 tháng 2 2018

Gọi số chi tiết máy tổ một và hai sản xuất được lần lượt là x và y (x, y Î N*; x, y < 900)

Theo đề bài ta có hệ phương trình:  x + y = 900 1 , 15 x + 1 , 1 y = 1010

Giải được x = 400 và y = 500

Vậy theo kế hoạch tổ một và hai phải sản xuất lần lượt 400 và 500 chi tiết máy

13 tháng 4 2020

Gọi x là số sản phẩm dự định sản xuất trong 1 ngày.(1200>x>0)

theo đề bài ta có phương trình :

\(\frac{1200}{x+20}=\frac{1200}{x}+3\)

Giải ra ta được:

x=80

Vậy theo kế hoạch mỗi ngày xưởng sản xuất 80 sản phẩm.

29 tháng 6 2016

lớp 10 nha các bn

30 tháng 6 2016

Gọi số sản phẩm theo kế hoạch 1 ngày phân xưởng phải sx là x (sản phẩm)    .   ĐK 0 < x < 1100

Thời gian hoàn thành kế hoạch theo quy định là  \(\frac{1100}{x}\)(ngày)

Số sản phẩm mỗi ngày xưởng thực hiện là  x + 5 (sản phẩm)

Thời gian xưởng thực hiện là \(\frac{1100}{x+5}\)(ngày)

Vì xưởng hoàn thành kế hoạch sớm hơn quy định 2 ngày , ta có pt

        =>\(\frac{1100}{x}-2=\frac{1100}{x+5}\)

        =>\(1100\left(x+5\right)-2x\left(x+5\right)=1100x\)

        <=>\(2x^2+10x-5500=0\)

          =>\(\orbr{\begin{cases}x_1=50\left(tm\right)\\x_2=-55\left(k^0tm\right)\end{cases}}\)

Vậy theo kế hoạch mỗi ngày xưởng phải sx 50 sản phẩm