Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB có MD là phân giác
nên AD/DB=AM/MB=AM/MC(1)
Xét ΔAMC có ME là phân giác
nen AE/EC=AM/MC(2)
Từ (1) và (2) suy ra AD/DB=AE/EC
hay DE//BC
b: \(\widehat{MDE}+\widehat{MED}=\widehat{DMB}+\widehat{EMC}\)
\(=\dfrac{1}{2}\cdot\left(\widehat{AMB}+\widehat{AMC}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
=>ΔDME vuông tại M
c: Xét ΔABM có DI//BM
nên DI/BM=AD/AB(1)
Xét ΔACM có IE//CM
nên IE/CM=AE/AC(2)
Xét ΔABC có DE//BC
nên AD/AB=AE/AC(3)
Từ (1), (2)và (3) suy ra ID=IE
hay I là trung điểm của DE
A B C D E H G M I K N
a)
▲BDE có
N là trung điểm DE (gt)
I là trung điểm BE (gt)
⇒NI là đường trung bình của tam giác BDE
⇒NI = 1/2 BD (1)
▲DEC có
K là trung điểm CD (gt)
N là trung điểm DE (gt)
⇒ NK là đường trung bình
⇒ NK = 1/2 CE (2)
▲BEC có
I là trung điểm BE (gt)
Mlà trung điểm BC (gt)
⇒MI là đường trung bình
⇒ MI = 1/2 CE (3) ,MI//CE
▲BDC có
K là trung điểm CD (gt)
M là trung điểm BC (gt)
⇒ MK là đường trung bình
⇒ MK = 1/2 BD (4) , MK//BD
Có (1)(2)(3)và (4) với BD=CE (gt)
⇒ NI=NK=MK=MI
⇒ MINK là hình thoi
b)
Có MK//BD (cmt)
⇒ \(\widehat {KMN}=\widehat {BHM} \) ( 2 góc SLT)
Có MI//CE (cmt)
⇒ \(\widehat {IMN}=\widehat {CGM}\) ( 2 góc SLT)
Có \(\widehat {KMN}=\widehat {IMN}\) ( MINK là hình thoi)
⇒ \(\widehat {BHM}=\widehat {CGM}\)
▲HAG có
\(\widehat {HAG}+\widehat {AHG}+\widehat {AGH} =180 độ\)
mà \(\widehat {CGM}=\widehat {AGH}\)
⇒\(\widehat {HAG}+2\widehat {CGM}\) = 180 độ
⇒ \(2\widehat {CGM}= 180 độ - \widehat {HAG}\)
Có \(\widehat {HAG}+\widehat {BAC}\) = 180 độ (2 góc kề bù)
⇒\(\widehat {BAC}= 180 độ -\widehat {HAG}\)
⇒ \(2\widehat {CGM} = \widehat {BAC}\)
mà At là tia phân giác góc BAC
⇒ \(2\widehat {CGM} = 2\widehat {CAt}\)
⇒ \(\widehat {CGM } = \widehat {CAt}\)
⇒ GM//At ( 2 góc Đồng vị)
Có MN⊥IK ( 2 đường chéo của hình thoi MINK) hay GM ⊥IK
⇒ At⊥IK
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
a: Xét ΔAMB có MD là phân giác
nên AD/DB=AM/MB=AM/MC(1)
Xét ΔAMC có ME là phân giác
nên AE/EC=AM/MC(2)
Từ (1) và (2)suy ra AD/DB=AE/EC
hay DE//BC
b: Xét ΔABM có DO//BM
nên DO/BM=AD/AB
hay DO/CM=AD/AB(3)
Xét ΔACM có OE//MC
nên OE/CM=AE/AC(4)
Xét ΔABC có DE//BC
nên AD/AB=AE/AC(5)
Từ (3), (4) và (5) suy ra OD=OE
hay O là trung điểm của DE