Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khoảng cách từ ảnh đến thấu kính là:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{8.4}{8-4}=8\left(cm\right)\)
Chiều cao của ảnh:
Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow h'=\dfrac{d'.h}{d}=\dfrac{8.2}{8}=2\left(cm\right)\)
Khoảng cách từ ảnh đến thấu kính:
Ta có: \(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow d'=\dfrac{h'.d}{h}=\dfrac{1,2.40}{20}=2,4\left(cm\right)\)
Khoảng cách từ ảnh đến thấu kính là:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{40.20}{40-20}=40\left(cm\right)\)
Chiều cao của ảnh là:
Ta có: \(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow h'=\dfrac{h.d'}{d}=\dfrac{20.40}{40}=20\left(cm\right)\)
a/ bạn tự làm nhé
b/ Ta có: d < f: ảnh ảo, cùng chiều, lớn hơn vật
c/ Khoảng cách từ ảnh đến thấu kính là:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\)
\(\Leftrightarrow\dfrac{1}{16}=\dfrac{1}{12}+\dfrac{1}{d'}\)
\(\Leftrightarrow d'=-48\left(cm\right)\)
d) Chiều cao của ảnh
Ta có: \(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow h'=\dfrac{h.d'}{d}=\dfrac{2.-48}{12}=-8\left(cm\right)\)
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\)
\(\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{9.3}{9-3}=4,5\left(cm\right)\)
Khoảng cách từ ảnh đến thấu kính là 4,5(cm)
Vậy khoảng cách từ ảnh đến vật là:
\(\Rightarrow d'+d=4,5+9=13,5\left(cm\right)\)
Ảnh ảo, ngược chiều và nhỏ hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{25}=\dfrac{1}{d'}-\dfrac{1}{15}\)
\(\Rightarrow d'=9,375cm\)
Độ cao ảnh A'B':
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{40}{h'}=\dfrac{15}{9,375}\Rightarrow h'=25cm\)