\(< ,>,\le,\ge\)"  vào chỗ trống cho thích hợp :

a) \(\left(-2\right).3...........">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

a) (2).3....> hoặc \(\ge\).....(2).5(−2).3.........(−2).5

b) 4.(2)...< hoặc \(\le\)....(7).(2)4.(−2).......(−7).(−2)

c) (6)2+2....\(\le\) hoặc \(\ge\)....36+2(−6)2+2........36+2

d) 5.(8).....> hoặc \(\ge\).....135.(8)

4 tháng 5 2017

a)ta có:(-2).3=-6 ; (-2).5=-10

Vì -6>-10 nên (-2).3>(-2).5

b)Ta có:4.(-2)=-8 ; (-7).(-2)=14

vì -8<14 nên 4.(-2)<(-7).(-2)

c)Ta có:(-6)2+2=36+2=38 ; 36+2=38

Vì 38=38 nên (-6)2+2=36+2

d)Ta có:5.(-8)=-40 ; 135.(-8)=-1080

Vì -40>-1080 nên 5.(-8) > 135.(-8)

23 tháng 8 2018

a) 12 + (-8) > 9 + (-8)

b) 13 - 19 < 15 - 19

c) (-4)2 + 7 ≥ 16 + 7

d) 452 + 12 > 450 + 12

31 tháng 3 2019

a,>

b,<

c,\(=\)

d,>

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

23 tháng 3 2018

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng

20 tháng 3 2019

a ) Ta có : \(\left(ab+1\right)^2\ge4ab\)

\(\Leftrightarrow a^2b^2+2ab+1-4ab\ge0\)

\(\Leftrightarrow\left(ab-1\right)^2\ge0\)

=> BĐT luôn đúng

Dấu " = " xảy ra \(\Leftrightarrow ab=1\)

b ) Áp dụng BĐT Bunhiacopxki , ta có :

\(\left(ab+1.2\right)^2\le\left(a^2+1^2\right)\left(b^2+2^2\right)=\left(a^2+1\right)\left(b^2+4\right)\)

Dấu " = " xảy ra \(\Leftrightarrow2a=b\)

c ) Áp dụng BĐT Cô - si cho 2 số không âm , ta có :

\(4a^2+b^2\ge2\sqrt{4a^2.b^2}=4ab\)

\(\Rightarrow2\left(4a^2+b^2\right)\ge4a^2+4ab+b^2=\left(2a+b\right)^2\)

Dấu " = " xảy ra \(\Leftrightarrow2a=b\)

d ) \(x^5+y^5\ge xy\left(x^3+y^3\right)\)

\(\Leftrightarrow x^5-x^4y-y^4x+y^5\ge0\)

\(\Leftrightarrow\left(x^4-y^4\right)\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\)

Vì x ; y > 0 => BĐT luôn đúng

Dấu " = " xảy ra \(\Leftrightarrow x=y\)

20 tháng 3 2019

d ) x ; y > 0 nên x không thể = - y

30 tháng 4 2018

a) 4x -8 ≥ 3(3x-1)-2x +1

⇒4x -8 ≥7x -2

⇒4x -7x ≥ -2 +8

⇒-3x ≥ 6

⇒x≤-2

Vậy bpt có nghiệm là:{x|x≤-2}

30 tháng 4 2018

b) (x-3)(x+2)+(x+4)2≤ 2x (x+5)+4

⇔ x2+2x - 3x - 6 +x2 + 8x +16≤ 2x2 + 10x +4

⇔ x2 +2x - 3x + x2 + 8x - 2x2- 10x ≤ 4+6-16

⇔ -3x ≤ -6

⇔ x≥ 2

Vậy bpt có tập nghiệm là: {x|x≥2}

6 tháng 6 2017

a,\(20x^2+7x-6=20x^2-8x+15x-6\)

\(=\left(20x^2-8x\right)+\left(15x-6\right)=4x.\left(5x-2\right)+3.\left(5x-2\right)\)

\(=\left(5x-2\right).\left(4x+3\right)\)

b,\(12x^2-23xy+10y^2=12x^2-8xy-15xy+10y^2\)

\(=\left(12x^2-8xy\right)-\left(15xy-10y^2\right)\)

\(=4x.\left(3x-2y\right)-5y.\left(3x-2y\right)\)

\(=\left(3x-2y\right).\left(4x-5y\right)\)

Chúc bạn học tốt!!!

1 tháng 6 2017

Hỏi đáp Toán

a: \(\Leftrightarrow x^2-2x+1< x^2+3x\)

=>-5x<-1

hay x>1/5

b: \(\Leftrightarrow x^2-4x< x^2-4\)

=>-4x<-4

hay x>1

c: \(\Leftrightarrow2x+3< 6-3+4x\)

=>2x+3<4x+3

=>-2x<0

hay x>0

d: =>-2-7x>3+2x-5+6x

=>-7x-2>8x-2

=>-15x>0

hay x<0