Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN(3k+2,5k+3) là d (d thuộc N*)
3k+2 chia hết cho d => 15k+10 chia hết cho d
5k+3 chia hết cho d => 15k+9 chia hết cho d
=> 15k+10-15k-9 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N*
=> d=1
=> 3k+2 và 5k+3 nguyên tố cùng nhau
Dạng tổng quát của các cố tự nhiên chia hết cho 3 là:
A. 3k (k ∈ N) B. 5k + 3 (k ∈ N) C. 3k + 1 (k ∈ N) D. 3k + 2 (k ∈ N)
Dạng tổng quá của các số tự nhiên chia 5 dư 2 là:
A. 5k (k ∈ N) B. 5k + 2 (k ∈ N) C. 2k + 5 (k ∈ N) D. 5k + 4 (k ∈ N)
ví dụ là 3k + 1 = 3 . 4 + 1 = 13
13 khi chia cho 3 thì còn dư 1 3k + 2 cũng vậy , 2 là số dư của phép tính đó
Số hạng chia hết cho a có dạng x = a.k (k ∈ N)
Do đó số hạng chia hết cho 3 có dạng x = 3k (k ∈ N)
theo mình là A