Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(M=x^4-xy^3+x^3y-y^4-1\)
\(\Leftrightarrow M=x^3\left(x+y\right)-y^3\left(x+y\right)-1\)
Mà \(x+y=0\)
\(\Leftrightarrow M=x^3.0-y^3.0-1\)
\(\Leftrightarrow M=-1\)
Vậy ...
a. Tại x=\(\frac{-1}{2}\), ta có:
\(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)
b. Ta có:
\(x^2+4x+3=0\)
\(\Rightarrow x^2+x+3x+3=0\)
\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)
\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)
Vậy \(x=-1;x=-3\)
.B=(4x-9)/(3x+y)-(4y+9)/(3y+x)
= [4x-(x-y)]/(3x+y) - [4y+(x-y)]/(3y+x)
= (4x-x+y)/(3x+y) - (4y+x-y)/(3y+x)
= (3x+y)/(3x+y) - (3y+x)/(3y+x)
= 1 - 1 = 0
mình nhanh nhất vậy bạn thưởng gì vậy ?
(\(\frac{-2}{3}\)x\(^3\)y\(^2\))(\(\frac{1}{2}\)x\(^2\)y\(^5\))
a: \(P=\dfrac{-2}{3}\cdot\dfrac{1}{2}x^3y^2\cdot x^2y^5=\dfrac{-1}{3}x^5y^7\)
Hệ số là -1/3
Phần biến là \(x^5;y^7\)
b: Khi x=-1 và y=1 thì \(A=\dfrac{-1}{3}\cdot\left(-1\right)^5\cdot1^7=\dfrac{1}{3}\)
a: \(P=\dfrac{-1}{3}x^5y^7\)
b: Khi x=-1 và y=1 thì P=1/3