Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(T'\left(t\right)=-0,1\cdot2t+1,2=-0,2t+1,2\)
Tốc độ thay đổi của nhiệt độ ở thời điểm t = 1,5s là:
\(T'\left(1,5\right)=-0,2\cdot1,5+1,2=0,9\)
\(\begin{array}{l} - 1 \le sin\frac{\pi }{{12}}(t - 9)\; \le 1\\ \Leftrightarrow - 3 \le 3sin\frac{\pi }{{12}}(t - 9)\; \le 3\\ \Leftrightarrow - 26 \le 29 + 3sin\frac{\pi }{{12}}(t - 9)\; \le 32\\ \Leftrightarrow - 26 \le h(t) \le 32\end{array}\)
Vâỵ nhiệt độ thấp nhất trong ngày là 26°C khi:
\(\begin{array}{l}29 + 3sin\frac{\pi }{{12}}(t - 9) = 26\\ \Leftrightarrow sin\frac{\pi }{{12}}(t - 9) = - 1\\ \Leftrightarrow \frac{\pi }{{12}}(t - 9) = - \frac{\pi }{2} + k2\pi \\ \Leftrightarrow t = 3 + 24k,k \in \mathbb{Z}.\end{array}\)
Do t là thời gian trong ngày tính bằng giờ nên \(0 \le t \le 24\). Suy ra: \(k = 0 \Rightarrow t = 3\).
Vì vậy vào thời điểm 3 giờ trong ngày thì nhiều độ thấp nhất của thành phố là 26°C.
Đáp án: C
Phương trình gia tốc là: \(a\left(t\right)=v'\left(t\right)=2t+2\)
a, Tại thời điểm t = 3(s), gia tốc tức thời là: \(a\left(3\right)=2\cdot3+2=8\left(m/s^2\right)\)
b, Vận tốc của chất điểm bằng 8
\(\Rightarrow t^2+2t-8=0\\ \Leftrightarrow\left(t-2\right)\left(t+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-4\left(loại\right)\end{matrix}\right.\)
Vậy khi t = 8s thì chất điểm đạt vận tốc 8m/s.
Dùng định nghĩa ta tính được Q'(t) = 4t + 1, từ đó suy ra cường độ dòng điện tại thời điểm t = 4(s) là I(4) = Q'(4) = 4.4 + 1 = 17
Chọn D
Dân số Việt Nam năm 2030 vào khoảng:
\(S=98564407\cdot e^{0,93\%\cdot9}=107169341\left(người\right)\)
a: Nhiệt độ ban đầu là:
\(T=25+70\cdot e^{-0.5\cdot0}=95\left(^0C\right)\)
b: ĐặtT=30
=>\(25+70\cdot e^{-0.5t}=30\)
=>\(e^{-0.5t}=\dfrac{1}{14}\)
=>\(-0.5t=ln\left(\dfrac{1}{14}\right)\)
=>\(t\simeq5,28\simeq6\)
=>Sau 6 phút thì nhiệt độ còn lại tầm 30 độ C
a, Quãng đường vật đã rơi tại thời điểm t = 2s sau khi thả vật đó là:
\(s\left(2\right)=0,81\cdot2^2=3,24\left(m\right)\)
b, Ta có: \(s'\left(t\right)=1,62t\Rightarrow s''\left(t\right)=1,62\)
Gia tốc của vật đã rơi tại thời điểm t = 2s sau khi thả vật đó là:
\(a\left(2\right)=s''\left(2\right)=1,62\left(m/s^2\right)\)
a)
Vận tốc rơi của viên sỏi lúc `t=2`:
$v(2) = 9,8 \cdot 2 = 19.6 , \text{m/s}$
b)
Khi viên sỏi chạm đất, quãng đường rơi sẽ bằng độ cao ban đầu:
$s(t) = 4.9t^2 = 44.1$
Giải phương trình trên, ta có:
$t^2 = \frac{44.1}{4.9}$
$t \approx 3,0 \text{giây}$
$v(3.0) = 9,8 \cdot 3,0 = 29,4 \text{m/s}$
Vậy vận tốc của viên sỏi khi chạm đất là $29,4 \text{m/s}$.
a: v(t)=s'(t)=4,9*2t=9,8t
Khi t=2 thì v(2)=9,8*2=19,6(m/s)
b: Quãng đường đi được là 44,1m
=>4,9t^2=44,1
=>t=3
Khi t=3 thì v(3)=9,8*3=29,4(m/s)
Trả lời:
a) Vận tốc của chuyển động khi t = 2 (s).
Ta có:
v=dsdt=S′=3t2−6t−9v=dsdt=S′=3t2−6t−9
Khi t = 2(s) ⇒ 3.22 – 6.22 – 9 = -9 m/s.
b) Gia tốc của chuyển động khi t = 3(s). Ta có:
a=dvdt=v′=6t−6a=dvdt=v′=6t−6
Ở t = 3(s) ⇒ a = 6.3 – 6 = 12 m/s2
c) Ta có: v = 3t2 – 6t – 9
Tại thời điểm vận tốc triệt tiêu:
v=0⇔3t2−6t−9=0⇔t2−2t−3=0⇔[t=−1(l)t=3(s)v=0⇔3t2−6t−9=0⇔t2−2t−3=0⇔[t=−1(l)t=3(s)
Gia tốc: a = 6t – 6.
Khi t = 3s ⇒ a = 6.3 – 6 = 12 m/s2
d) Ta đã có a = 6t – 6.
Khi a = 0 ⇔ 6t – 6= 0 ⇔ t = 1(s)
Lại có: v = 3t2 – 6t – 9
Khi t = 1(s) ⇒ v = 3.12 – 6.1 – 9 = -12 m/s
Mấy câu trả lời SGK trình bày giúp anh Latex cái hoặc gõ ra nhưng gõ định dạng ấy em. Chứ như thế này anh sợ nhiều người không đọc được chữ ấy, mặc dù anh cũng đọc được.
Ta có:
\(\begin{array}{l}P'\left( t \right) = \frac{{{{\left( {500t} \right)}^\prime }\left( {{t^2} + 9} \right) - \left( {500t} \right){{\left( {{t^2} + 9} \right)}^\prime }}}{{{{\left( {{t^2} + 9} \right)}^2}}}\\ = \frac{{500\left( {{t^2} + 9} \right) - \left( {500t} \right).2t}}{{{{\left( {{t^2} + 9} \right)}^2}}}\\ = \frac{{500{t^2} + 4500 - 1000{t^2}}}{{{{\left( {{t^2} + 9} \right)}^2}}} = \frac{{4500 - 500{t^2}}}{{{{\left( {{t^2} + 9} \right)}^2}}}\end{array}\)
Tốc độ tăng dân số tại thời điểm \(t = 12\) là: \(P'\left( {12} \right) = \frac{{4500 - 500{t^2}}}{{{{\left( {{t^2} + 9} \right)}^2}}} \approx - 2,88\).