Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2-x+1 x^4+x^3-4x^2+5x-a x^2+2x-3 x^4-x^3+x^2 2x^3-5x^2+5x-a 2x^3-2x^2+2x -3x^2+3x-a -3x^2+3x-3 -(a-3)
Để đa thức x4+x3-4x2+5x-a chia hết cho đa thức x2-x+1 thì
\(-\left(a-3\right)=0\)
\(\Leftrightarrow a-3=0\Leftrightarrow a=3\)
Vậy a = 3 thì đa thức x4+x3-4x2+5x-a chia hết cho đa thức x2-x+1
Có A = x4 + x3 - 4x2 + 5x - a
= x4 - x3 + x2 + 2x3 - 2x2 + 2x - 3x2 + 3x - 3 - a + 3
= x2(x2 - x + 1) + 2x(x2 - x + 1) - 3(x2 - x + 1) - (a - 3)
= (x2 - x + 1)(x2 + 2x - 3) - (a - 3)
Do (x2 - x + 1)(x2 + 2x - 3) chia hết cho x2 - x + 1 nên để A chia hết cho x2 - x + 1
thì - (a - 3) = 0 <=> a = 3
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
Đặt phép chia ta thấy A(x) chia cho B(x) được x^2-2x-1/2 và dư m-3/2
Để A(x) chia hết cho B(x) thì m-3/2=0 <=> m=3/2
(bạn biết cách chia đa thức một biến rồi chứ)
Bài 2.
a) x(x-2)-x+2=0
<=> x2-2x-x+2=0
<=> x2-3x+2=0
<=> x2-x-2x-2=0
<=> x(x-1)-2(x-1)=0
<=> (x-1)(x-2)=0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
b) x2(x2+1)-x2-1=0
<=> x4+x2-x2-1=0
<=> x4-1=0
<=> x4=1
<=> x=\(\pm\)1
\(A\left(x\right)=x^4+2x^3+2x^3+4x^2-4x^2-8x+13x+26-18\)
\(=\left(x+2\right)\left(x^3+2x^2-4x+13\right)-18\)
A chia cho b khi \(x+2\in\left\{1;-1;2;-2;3;-3;6;-6;9;-9;18;-18\right\}\)
hay \(x\in\left\{-1;-3;0;-4;1;-5;4;-8;7;-11;16;-20\right\}\)