Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có link câu này bạn tham khảo xem có được không nhé
https://h.vn/hoi-dap/question/535151.html
Học tốt nhé!
Ít thôi -..-
a) ( 3x + 2 )( 2x + 9 ) - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )
<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )
<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4
<=> 12x + 15 = 2x + 5
<=> 12x - 2x = 5 - 15
<=> 10x = -10
<=> x = -1
b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )
<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20
<=> 3x2 - 12x - 2 = 3x2 - 17x + 20
<=> 3x2 - 12x - 3x2 + 17x = 20 + 2
<=> 5x = 22
<=> x = 22/5
c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8
<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
<=> 12x + 16 = -8
<=> 12x = -24
<=> x = -2
d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16
<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16
<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16
<=> 8x2 - 9x - 4 = 16
<=> 8x2 - 9x - 4 - 16 = 0
<=> 8x2 - 9x - 20 = 0
( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm
2 là nghiệm vô tỉ =) )
a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)
=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)
=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4
=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)
=> 12x + 15 = 2x + 5
=> 12x + 15 - 2x - 5 = 0
=> 10x + 10 = 0
=> 10x = -10 => x = -1
b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)
=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20
=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20
=> 3x2 - 12x - 2 = 3x2 - 17x + 20
=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0
=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0
=> 5x - 22 = 0
=> 5x = 22 => x = 22/5
c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8
=> x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 + 12x = -8
=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8
=> 12x + 16 = -8
=> 12x = -24
=> x = -2
Còn bài cuối làm nốt
a) Ta có: \(a\left(m-n\right)+m-n\)
\(=a\left(m-n\right)+\left(m-n\right)\)
\(=\left(m-n\right)\left(a+1\right)\)
b) Ta có: \(mx+my+5x+5y\)
\(=m\left(x+y\right)+5\left(x+y\right)\)
\(=\left(x+y\right)\left(m+5\right)\)
c) Ta có: \(ma+mb-a-b\)
\(=m\left(a+b\right)-\left(a+b\right)\)
\(=\left(a+b\right)\left(m-1\right)\)
d) Ta có: \(1-xa-x+a\)
\(=\left(a+1\right)-x\left(a+1\right)\)
\(=\left(a+1\right)\left(1-x\right)\)
e) Ta có: \(\left(a-b\right)^2-\left(b-a\right)\left(a+b\right)\)
\(=\left(a-b\right)^2+\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(a-b+a+b\right)\)
\(=2a\left(a-b\right)\)
f) Ta có: \(a\left(a-b\right)\left(a+b\right)-\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left(a^2-ab\right)-\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left(a^2-ab-a^2+ab-b^2\right)\)
\(=b^2\cdot\left(a+b\right)\)
g) Ta có: \(3x\left(x+7\right)^2-11x^2\left(x+7\right)+9\left(x+7\right)\)
\(=\left(x+7\right)\left[3x\left(x+7\right)-11x^2+9\right]\)
\(=\left(x+7\right)\left(3x^2+21x-11x^2+9\right)\)
\(=\left(x+7\right)\left(-8x^2+21x+9\right)\)
\(=\left(x+7\right)\left(-8x^2+24x-3x+9\right)\)
\(=\left(x+7\right)\left[-8x\left(x-3\right)-3\left(x-3\right)\right]\)
\(=\left(x+7\right)\left(x-3\right)\left(-8x-3\right)\)
h) Ta có: \(\left(x+5\right)^2-3\left(x+5\right)\)
\(=\left(x+5\right)\left(x+5-3\right)\)
\(=\left(x+5\right)\left(x+2\right)\)
i) Ta có: \(2x\left(x-3\right)-3\left(x-3\right)^2\)
\(=\left(x-3\right)\left[2x-3\left(x-3\right)\right]\)
\(=\left(x-3\right)\left(2x-3x+9\right)\)
\(=\left(x-3\right)\left(9-x\right)\)
j) Ta có: \(x\left(x-7\right)+\left(7-x\right)^2\)
\(=x\left(x-7\right)+\left(x-7\right)^2\)
\(=\left(x-7\right)\left(x+x-7\right)\)
\(=\left(x-7\right)\left(2x-7\right)\)
k) Ta có: \(3x\left(x-9\right)^2-\left(9-x\right)^3\)
\(=3x\left(x-9\right)^2+\left(x-9\right)^3\)
\(=\left(x-9\right)^2\cdot\left(3x+x-9\right)\)
\(=\left(x-9\right)^2\cdot\left(4x-9\right)\)
b1:
câu a,f áp dụng a2-b2=(a-b)(a+b)
câu b,c áp dụng a3-b3=(a-b)(a2+ab+b2)
câu d: \(x^2+2xy+x+2y=x\left(x+2y\right)+\left(x+2y\right)=\left(x+1\right)\left(x+2y\right)\)
câu e: \(7x^2-7xy-5x+5y=7x\left(x-y\right)-5\left(x-y\right)=\left(7x-5\right)\left(x-y\right)\)
câu g xem lại đề
\(1,x^3-x=x\left(x^2-1\right)=x\left(x^2-1^2\right)=x\left(x-1\right)\left(x+1\right)\)
\(2,4ax^3-ax=ax\left(4x^2-1\right)=ax\left[\left(2x\right)^2-1^2\right]\) \(=ax\left(2x-1\right)\left(2x+1\right)\)
\(3,x^3-2x^2+x\)
\(=x^3-x^2-x^2+x\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x\right)=\left(x-1\right).x\left(x-1\right)=x\left(x-1\right)^2\)
\(4,y-4xy+4x^2y\)
\(=y\left(1-4x+4x^2\right)\)
\(=y\left(1^2-2.1.2x+\left(2x\right)^2\right)^{ }\)
\(=y\left(1-2x\right)^2\)
a,\(2x^2-8x+y^2+2y+9=0\)
\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0\forall x\); \(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy x=2;y=-1
Là giúp em làm cái gì thế ? Đề bài đâu em?
dạ đề kêu là tìm giá trị nhỏ nhất của biểu thức.