K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2021

\(\sqrt{x\left(x+2\right)}\)

\(ĐKXĐ:x\left(x+2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< -2\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x\ge0\\x< -2\end{matrix}\right.\)

ĐKXĐ: \(\left[{}\begin{matrix}x\le-2\\x\ge0\end{matrix}\right.\)

22 tháng 8 2021

x≥2

ĐKXĐ: \(-2\le x\le2\)

22 tháng 8 2021

x≤1

22 tháng 8 2021

x < hoặc bằng 1

13 tháng 6 2018

Chưa học tới nên sai thì thoi nhé :) 

\(a)\) ĐKXĐ : \(1-16x^2\ge0\)

\(\Leftrightarrow\)\(1^2-\left(4x\right)^2\ge0\)

\(\Leftrightarrow\)\(\left(1+4x\right)\left(1-4x\right)\ge0\)

TH1 : \(\hept{\begin{cases}1+4x\ge0\\1-4x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{-1}{4}\\x\le\frac{1}{4}\end{cases}\Leftrightarrow}\frac{-1}{4}\le x\le\frac{1}{4}}\)

TH2 : \(\hept{\begin{cases}1+4x\le0\\1-4x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{-1}{4}\\x\ge\frac{1}{4}\end{cases}}\) ( loại ) 

Vậy ĐKXĐ : \(\frac{-1}{4}\le x\le\frac{1}{4}\)

Chúc bạn học tốt ~ 

7 tháng 7 2020

Bài 2 :

a) \(ĐKXĐ:\hept{\begin{cases}x;y>0\\x\ne y\end{cases}}\)

b) \(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\right):\frac{x\sqrt{xy}+y\sqrt{xy}}{\sqrt{xy}\left(y-x\right)}\)

\(\Leftrightarrow A=\frac{x-\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}:\frac{x+y}{y-x}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}\cdot\frac{y-x}{x+y}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(y-x\right)}{x+y}\)

c) Thay \(x=4+2\sqrt{3},y=4-2\sqrt{3}\)vào A, ta được :

   \(A=\frac{\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right)\left(4-2\sqrt{3}-4-2\sqrt{3}\right)}{4+2\sqrt{3}+4-2\sqrt{3}}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\right).\left(-4\sqrt{3}\right)}{8}\)

\(\Leftrightarrow A=\frac{\left(1+\sqrt{3}-\sqrt{3}+1\right).\left(-4\sqrt{3}\right)}{8}=\frac{-8\sqrt{3}}{8}=-\sqrt{3}\)

Vậy ....

7 tháng 7 2020

Bài 1:

\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}-\sqrt{2}}=\frac{2\sqrt{2\cdot4}-\sqrt{3\cdot4}}{\sqrt{2\cdot9}-\sqrt{16\cdot3}}-\frac{\sqrt{5}+\sqrt{9\cdot3}}{\sqrt{30}-\sqrt{2}}\)

\(=\frac{4\sqrt{2}-2\sqrt{3}}{3\sqrt{2}-4\sqrt{3}}-\frac{\sqrt{5}+3\sqrt{3}}{\sqrt{30}-\sqrt{2}}=\frac{\left(4\sqrt{2}-2\sqrt{3}\right)\left(\sqrt{30}-\sqrt{2}\right)-\left(\sqrt{5}+3\sqrt{3}\right)\left(3\sqrt{2}-4\sqrt{3}\right)}{\left(3\sqrt{2}-4\sqrt{3}\right)\left(\sqrt{30}-\sqrt{2}\right)}\)

\(=\frac{4\sqrt{60}-8-2\sqrt{90}+2\sqrt{6}-3\sqrt{10}+4\sqrt{15}-9\sqrt{6}+36}{3\sqrt{60}-6-4\sqrt{90}+4\sqrt{6}}\)

\(=\frac{8\sqrt{15}-8-6\sqrt{10}+2\sqrt{6}-3\sqrt{10}+4\sqrt{15}-9\sqrt{6}+36}{6\sqrt{15}-6-12\sqrt{10}+4\sqrt{6}}\)

\(=\frac{12\sqrt{15}-2\sqrt{10}-7\sqrt{6}+28}{6\sqrt{15}-12\sqrt{10}+4\sqrt{6}-6}\)

10 tháng 9 2020

a) ĐKXĐ: \(x^2+6x+11\ge0\)đúng\(\forall x\inℝ\)

b) ĐKXĐ: \(\hept{\begin{cases}\left(2x-3\right)\left(x+2\right)\ge0\\x+3\ne0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\le-2,x\ne-3\\x\ge\frac{3}{2}\end{cases}}}\)

c) ĐKXĐ: \(-x^2-5\ge0\)Vô nghiệm\(\forall x\inℝ\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}-2< =x< =2\\x< >0\end{matrix}\right.\)

c: \(f\left(-x\right)=\dfrac{\sqrt{2-\left(-x\right)}-\sqrt{2+\left(-x\right)}}{-x}=\dfrac{\sqrt{2+x}-\sqrt{2-x}}{-x}=\dfrac{\sqrt{2-x}-\sqrt{2+x}}{x}=f\left(x\right)\)

9 tháng 5 2017

a/ Sửa đề:

\(\sqrt{22x^2+36xy+6y^2}+\sqrt{22y^2+36xy+6x^2}=x^2+y^2+32\)

\(\Leftrightarrow64x^2+64y^2+2048-64\sqrt{22x^2+36xy+6y^2}-64\sqrt{22y^2+36xy+6x^2}=0\)

\(\Leftrightarrow\left(22x^2+36xy+6y^2-64\sqrt{22x^2+36xy+6y^2}+1024\right)+\left(22y^2+36xy+6x^2-64\sqrt{22y^2+36xy+6x^2}+1024\right)+\left(36x^2-72xy+36y^2\right)=0\)

\(\Leftrightarrow\left(\sqrt{22x^2+36xy+y^2}-32\right)^2+\left(\sqrt{22y^2+36xy+6x^2}-32\right)^2+36\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{22x^2+36xy+6y^2}=32\\\sqrt{22y^2+36xy+6x^2}=32\\x=y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{64x^2}=32\\x=y\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=4\\x=y=-4\end{cases}}\)

9 tháng 5 2017

Câu b đề sai rồi.