K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10 2024

Lời giải:

Áp dụng định lý Viet:

$x_1+x_2=\frac{-4}{2}=-2$

$x_1x_2=\frac{-1}{2}$

Khi đó:

$A=x_1x_2^3+x_1^3x_2=x_1x_2(x_1^2+x_2^2)$

$=x_1x_2[(x_1+x_2)^2-2x_1x_2]$

$=\frac{-1}{2}[(-2)^2-2.\frac{-1}{2}]=\frac{-5}{2}$

25 tháng 11 2018

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2-2xy+4=4x\)

\(\Leftrightarrow\left(xy-1\right)^2+3=4x\)

\(\left(xy-1\right)^2+3>0\)

Nên 4x>0

x>0

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

\(x^2y^2+4>0\forall x,y\)

Nên \(2x\left(y+2\right)>0\)

Mặt khác x>0

nên y+2>0

=> y>-2 (1)

Áp dụng bđt Cosi ta có:

\(x^2y^2+4\ge4xy\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

Nên \(2x\left(y+2\right)\ge4xy\)

\(\Rightarrow y+2\ge2y\)

\(\Leftrightarrow y\le2\) (2)

Do y \(\in Z\) và ta đã có (1), (2)

Nên \(y\in\left\{-1;0;1;2\right\}\)

Th1: y = -1

\(\Rightarrow x^2-2x\left(-1+2\right)+4=0\)

\(\Leftrightarrow x^2-2x+4=0\)

\(\Leftrightarrow\left(x-1\right)^2+3=0\left(vl\right)\)

Th2: y = 0

\(\Rightarrow x^2-2x\left(0+2\right)+4=0\)

\(\Leftrightarrow x^2-4x+4=0\)

\(\Rightarrow x=2\) (nhận)

Th3: y = 1

\(\Rightarrow x^2-2x\left(1+2\right)+4=0\)

\(\Leftrightarrow x^2-6x+4=0\)

\(\Leftrightarrow\left(x-3\right)^2=5\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=-\sqrt{5}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Th4: y = 2

\(\Rightarrow x^2-2x\left(2+2\right)+4=0\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{12}+3\\x=-\sqrt{12}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Vậy \(\left(x;y\right)\in\left\{2;0\right\}\)

25 tháng 11 2018

4 Th sai cả rồi

do mình thế ngu

ra y \(\in\left\{-1;0;1;2\right\}\) thì bạn thế vô tính x nhé

NV
4 tháng 2 2020

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=m-6\\\left(m+3\right)x-2y=4m-13\end{matrix}\right.\)

Theo điều kiện có nghiệm duy nhất của hệ thì:

\(\frac{m+3}{1}\ne\frac{-2}{-1}\Leftrightarrow m\ne-1\)

Khi đó: \(\left\{{}\begin{matrix}x-y+6=m\\3x-2y+13=4m-mx\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y+6=m\\\frac{3x-2y+13}{4-x}=m\end{matrix}\right.\) \(\Rightarrow x-y+6=\frac{3x-2y+13}{4-x}\)

Đây là biểu thức liên hệ 2 nghiệm ko phụ thuộc m

Muốn chắc chắn hơn, bạn có thể biện luận riêng trường hợp \(x=4\)

7 tháng 8 2020

ap dung he thuc vi-et tinh x1+x2, x1.x2 cung duoc dung khong

đúng rồi

1 tháng 5 2018

a) Để phương trình có nghiệm kép thì \(\Delta=0\)

<=> \(m^2-4=0\)

<=> \(\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)

+) Với m = 2 thì phương trình có nghiệm kép là   (-1)

+) Với m = -2 thì phương trình có nghiệm kép là  (1)

b) Có : \(\Delta=b^2-4ac=9-4.2.\left(-5\right)=49>0\)

Suy ra phương trình có 2 nghiệm phân biệt (x1;x2) là (5/2;-1)