Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bình phương tổng chứ
b, B= x^2+ 2xy+y^2 +4y+4
= x^2+2xy+y^2+y^2+4y+4
=(x+y)^2+(y+2)^2
c, C= 2x^2+6xy+9y^2+2x+1
= x^2+6xy+9y^2+x^2+2x+1
= (x+3)^2+(x+1)^2
d, D= x(x+2) +(x+1)(x+3) +2
= x^2+2x+x^2+3x+x+3+2
= x^2+2x+1+x^2+4x+4
= (x+1)^2+(x+2)^2
e, E= x^2-2xy+2y^2+2y+1
= x^2-2xy+y^2+y^2+2y+1
= (x-y)^2+(y+1)^2
f, F= 4x^2-12xy+10y^2+4y+4
=4x^2-12xy+9y^2+y^2+4y+4
=(2x-3y)^2+(y+2)^2
g, G=2x^2+4xy+4y^2+4x+4
=x^2+4xy+4y^2+x^2+4x+4
=(x+2y)^2+(x+2)^2
Xong r.... dài quá...mới hè lớp 7 nên có j bỏ qua ak
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
a) x^4 - x^3 - x + 1
= x^3 ( x - 1 ) - ( x- 1 )
= ( x^3 - 1 )(x - 1)
= ( x- 1 )^2 (x^2 + x + 1 )
a)x4-x3-x+1
=x3(x-1)-(x-1)
=(x-1)(x3-1)
=(x-1)(x-1)(x2+x+1)
=(x-1)2(x2+x+1)
b)5x2-4x+20xy-8y
(sai đề)
a )x2+2y2-2xy+2x-4y+2=0
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>x-y+1=0 va y-1=0
<=>x=y-1 y=1
<=>x=1-1=0 y=1
\(a,VT=\left(a+b+c\right)\left(a-b+c\right)\)
\(=\left(a+c+b\right)\left(a+c-b\right)\)
\(=\left(a+c\right)^2-b^2\)
\(=a^2+2ac+c^2-b^2=VP\)
\(b,VT=\left(3x+2y\right)\left(3x-2y\right)-\left(4x-2y\right)\left(4x+2y\right)\)
\(=9x^2-4y^2-16x^2+4y^2=-7x^2=VP\)
\(c,VT=x^3-1-x^3-1=-2=VP\)
\(d,VT=8x^3+1-8x^3+1=2=VP\)
\(e,VT=\left(x^2+2xy+4y^2\right)\left(x-2y-2x+1\right)\)
\(=\left(x^2+2xy+4y^2\right)\left(-x-2y+1\right)\)
\(=-x^3-2x^2y+x^2-2x^2y-4xy^2+2xy-4xy^2-8y^3+4y^2\)
( bn kiểm tra lại đề nhé)
a,\(2x^2-8x+y^2+2y+9=0\)
\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0\forall x\); \(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy x=2;y=-1
c) 2x^3y - 2xy^3 - 4xy^2 - 2xy
= 2xy ( x^2 - y^2 - 2y - 1 )
= 2xy ( x^2 - ( y^2 + 2y + 1 )
= 2xy ( x^2 - ( y + 1 )^2 )
= 2x ( x - y - 1 )( x + y + 1 )
sai bạn ơi !
đáp án là
= 2xy (x + y + 1) (x - y + 1)
that pun cho ban Nguyen Dieu Thao :((