Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^4-3x^3-14x^2-x+10\)
\(=\left(2x^4-4x^3-10x^2\right)+\left(x^3-2x^2-5x\right)-2x^2+4x+10\)
\(=2x^2\left(x^2-2x-5\right)+x\left(x^2-2x-5\right)-2\left(x^2-2x-5\right)\)
\(=\left(x^2-2x-5\right)\left(2x^2+x-2\right)\)
* Chứng minh:
Phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a . x 2 + b x + c ( đ p c m ) .
* Áp dụng:
a) 2 x 2 – 5 x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
b) 3 x 2 + 8 x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ ’ = 4 2 – 2 . 3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
* Chứng minh:
Phương trình ax2 + bx + c = 0 có hai nghiệm x1; x2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a.x2 + bx + c (đpcm).
* Áp dụng:
a) 2x2 – 5x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
3x2 + 8x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ’ = 42 – 2.3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
Phương trình 18 x 2 + 23x + 5 = 0 có a – b + c = 18 – 23 + 5 = 0 nên phương trình có hai nghiệm phân biệt là x 1 = − 1 ; x 2 = − 5 18 . Khi đó A = 18 (x + 1) x + 5 18
Đáp án: A
4x^2 - 7x -2 = 4x^2 - 8x + x - 2 = 4x(x - 2) + (x - 2) = (x -2)(4x + 1)
a) Phương trình 2x2 – 5x + 3 = 0 có a + b + c = 2 – 5 + 3 = 0 nên có hai nghiệm là x1 = 1, x2 = \(\dfrac{3}{2}\) nên:
2x2 – 5x + 3 = 2(x – 1)(x2 - \(\dfrac{3}{2}\)) = (x – 1)(2x – 3)
b) Phương trình 3x2 + 8x + 2 có a = 3, b = 8, b’ = 4, c = 2.
Nên ∆’ = 42 – 3 . 2 = 10, có hai nghiệm là:
x1 = \(\dfrac{-4-\sqrt{10}}{3}\), x2 = \(\dfrac{-4+\sqrt{10}}{3}\)
nên: 3x2 + 8x + 2 = 3(x - \(\dfrac{-4-\sqrt{10}}{3}\))(x - \(\dfrac{-4+\sqrt{10}}{3}\))
= 3(x + \(\dfrac{4+\sqrt{10}}{3}\))(x + \(\dfrac{4-\sqrt{10}}{3}\))