Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: n n − 1 = 20 b) Ta có: n n − 1 = 90
n n − 1 = 5.4 ⇒ n = 5 . n n − 1 = 10.9 ⇒ n = 10
Vậy n = 5 . Vậy n = 10 .
Nếu có 3 đường thẳng cắt nhau tại 1 điểm thì chúng tạo thành 6 tia chung gốc.
Mỗi tia tạo với 5 tia còn lại 5 góc mà có 6 tia như vậy nên có tất cả số góc là:
5 x 6 = 30 góc
Vì mỗi góc được tính lặp lại 2 lần nên có tất cả:
30 : 2 = 15 góc
3 đường thẳng cắt nhau tạo thành 3 góc bẹt. Vậy có tất cả số góc khác góc bẹt là:
15 - 3 = 12 góc khác góc bẹt
Có tất cả 12 góc khác góc bẹt mà mỗi góc có 1 góc đối đỉnh với nó. Nên có tất cả:
12 : 2 = 6 cặp góc đối đỉnh
Nguồn: https://h.vn/hoi-dap/question/87465.html
b,https://olm.vn/hoi-dap/question/181733.html
bạn click vô link sẽ dẫn đến bài viết
a) Liệt kê các cặp góc đối đỉnh
Xét các cặp góc “đơn”:
Góc 1 đối đỉnh với góc 5; Góc 2 đối đỉnh với góc 6; Góc 3 đối đỉnh với góc 7; Góc 4 đối đỉnh với góc 8. Có tất cả 4 góc “đơn” đối đỉnh.
Xét các cặp góc “ghép đôi” (ghép hai góc đơn kề nhau thành một góc “ghép đôi”):
Góc 12 đối đỉnh với góc 56; Góc 23 đối đỉnh với góc 67; Góc 34 đối đỉnh với góc 78; Góc 45 đối đỉnh với góc 81. Có tất cả 4 cặp góc “ghép đôi” đối đỉnh.
Xét các cặp góc “ghép ba” (ghép ba góc đơn kề nhau thành một góc “ghép ba”):
Góc 123 đối đỉnh với góc 567; Góc 234 đối đỉnh với góc 678; Góc 345 đối đỉnh với góc 781; Góc 456 đối đỉnh với góc 812. Có tất cả 4 cặp góc “ghép ba” đối đỉnh.
Vậy tổng cộng có 4.3 = 12 cặp góc đối đỉnh.
b) Xây dựng công thức tính số cặp góc đối đỉnh.
Có 4 đường thẳng cắt nhau tại một điểm nên có: 4.2 = 8 (tia).
Số góc do 8 tia tạo ra là 8.7 2 = 28 (góc).
Không kể góc bẹt thì số góc còn lại là: 28 − 4 = 24 (góc).
Mỗi góc trong 24 góc này đều có một góc đối đỉnh với nó nên số cặp góc đối đỉnh được tạo thành là 24 : 2 = 12 (cặp).
* Nhận xét: Nếu có n đường thẳng cắt nhau tại một điểm thì số cặp góc đối đỉnh (không kể góc bẹt) được tạo thành là n(n-1).
Thật vậy, số tia do n đường thẳng cắt nhau tại một điểm tạo ra là 2n (tia).
Số góc do 2n tia tạo ra là: 2 n 2 n − 1 2 = n 2 n − 1 .
Không kể n góc bẹt thì số góc còn lại là: n 2 n − 1 − n = 2 n 2 − n − n = 2 n 2 − 2 n = 2 n n − 1 .
Số cặp góc đối đỉnh là: 2 n n − 1 2 = n n − 1 .
Với n đường thẳng cắt nhau tại 1 điểm,ta được 2n tia chung gốc.
Chọn 1 tia trong 2n tia chung gốc đã cho tạo với 2n -1 tia còn lại, ta được 2n-1 (góc)
Làm như vậy với 2n tia chung gốc,ta được:
2n. (2n-1) (góc)
Nhưng vì mỗi góc đã được tính 2 lần nên số góc thực có là:
\(\frac{2n.\left(2n-1\right)}{2}\)= n.(2n-1) (góc)
Trong đó có n đường thẳng nên sẽ có n góc bẹt
=> Số góc khác góc bẹt là:
n. (2n-1) -n (góc)
Mỗi góc trong số n.( 2n-1) -n đều có một góc đối đỉnh với nó
=> Số cặp góc đối đỉnh là:
\(\frac{n.\left(2n-1\right)-n}{2}\)= \(\frac{n.\left(2n-1-1\right)}{2}\)=\(\frac{n.\left(2n-2\right)}{2}\)= n.(n-1) (cặp góc)
Vậy có tất cả n.( n-1) cặp góc đối đỉnh được tạo thành ( không kể góc bẹt)
21 đường thẳng cắt nhau tại 1 điểm tạo thành 42 tia chung gốc.
Mỗi tia tạo với 41 tia còn lại 41góc mà có 42 tia như vậy nên có tất cả số góc là:
41.42=1722 ( góc )
Vậy có tất cả các cặp góc đối đỉnh được tạo thành nếu tính cả góc bẹt là :
1722 : 2 = 861 ( cặp góc )
-Chúc bạn học tốt-
_Minh ngụy_
Ta có :2015(2015−1)2015(2015-1)
=2015.2014=2015.2014
=4058210
~hok tốt~
a)a) ˆAOCAOC^; ˆAODAOD^; ˆDOBDOB^; ˆCOBCOB^
b)b) ˆBOCBOC^=180180-ˆCOACOA^=180−50=130180-50=130
⇒⇒ ˆBOD=50BOD=50^ ( đối đỉnh với ˆAOCAOC^ )
Với n đường thẳng cắt nhau tại 1 điểm, ta được \(2n\) tia chung gốc
Chọn 1 tia trong \(2n\) tia chung gốc đã cho tạo với 2n - 1 tia còn lại, ta được \(2n-1\) ( góc )
Làm như vậy với \(2n\) tia chung gốc, ta được \(2n\left(2n-1\right)\) ( góc )
Nhưng vì mỗi góc đã được tính 2 lần nên số góc thực có là:
\(\dfrac{2n\left(2n-1\right)}{2}=n\left(2n-1\right)\) ( góc )
Trong đó có đường thẳng nên sẽ có \(n\) góc bẹt
Số góc khác góc bẹt là:
\(n\left(2n-1\right)-n\) ( góc )
Mỗi góc trong số \(n\left(2n-1\right)-n\) đều có một góc đối đỉnh với nó:
Số cặp góc đối đỉnh là:
\(\dfrac{n\left(2n-1\right)-n}{2}=\dfrac{n\left(2n-1-1\right)}{2}\) \(=\dfrac{n\left(2n-2\right)}{2}=n\left(n-1\right)\) ( cặp góc )
Vậy có tất cả \(n\left(n-1\right)\) cặp góc đối đinth được tạo thành ( không tính góc bẹt )