Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Không tồn tại 1 tam giác với 3 cạnh có độ dài trên vì :
\(\left\{{}\begin{matrix}\sqrt{17}+\sqrt{5+1}\approx6,6< 3\sqrt{5}\\\sqrt{17}+3\sqrt{5}\approx10,8>\sqrt{5+1}\\\sqrt{5+1}+3\sqrt{5}\approx9,2>\sqrt{17}\end{matrix}\right.\)
( cái 1 vô lý với BĐT tam giác )
Ta có \(\sqrt{17}< \sqrt{19,36}=4,4\)
\(\sqrt{5}>2,2\) => \(2\sqrt{5}>2,2.2=4,4\)
Vì \(\sqrt{5}>2,2\) nên \(\sqrt{5}+1< 2\sqrt{5}\)
Vậy \(2\sqrt{5}\) là cạnh lớn nhất
Xét \(\sqrt{17}+\left(\sqrt{5}+1\right)\)
Ta có \(\sqrt{17}>\sqrt{16}=4\)
\(\sqrt{5}>2\) => \(\sqrt{17}+\left(\sqrt{5}+1\right)>4+2+1=7\)
Ta có \(\sqrt{5}< 3\) => \(2\sqrt{5}< 2.3=6\)
Vậy \(\sqrt{17}+\left(\sqrt{5}+1\right)>2\sqrt{5}\)
Vậy có tam giác có độ dài 3 cạnh như trên
Dựa vào đây mà làm nhé : Câu hỏi của nhi anny - Toán lớp 9 - Học toán với OnlineMath
Bài 7 :
( bạn đạt A = (...) cái biểu thức đấy nhé, tự đặt )
Ta có :
\(\frac{1}{\sqrt{1}}=\frac{1}{1}>\frac{1}{10}=\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
\(............\)
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow\)\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)
\(A>\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)
\(\Rightarrow\)\(A>10\)
Vậy \(A>10\)
Chúc bạn học tốt ~
Bạn làm được mình bài 7 thôi à, mình thấy bạn giỏi lắm mà. Mình có tới mấy chục bài cần giải cơ. Dạo này mình hỏi nhiều vì sắp đi thi.
dung roi rat la ...
Ta có: \(\hept{\begin{cases}\sqrt{5+1}< \sqrt{16}\\\sqrt{16}< \sqrt{17}\\\sqrt{17}< \sqrt{45}=3\sqrt{5}\end{cases}}\)
Từ đây,ta có: \(\sqrt{5+1}< \sqrt{17}< \sqrt{5}\)
Theo BĐT tam giác thi tổng dài hai cạnh của tam giác luôn lớn hơn cạnh còn lại.
Ta có: \(\sqrt{5+1}+\sqrt{17}=\sqrt{7}+\sqrt{6}\)
Mặt khác,hiển nhiên ta có: với a,b > 0 thì \(a+b< ab\)
Áp dụng vào,ta có: \(\sqrt{5+1}+\sqrt{17}=\sqrt{7}+\sqrt{6}< \sqrt{7}.\sqrt{6}=\sqrt{42}< \sqrt{45}=3\sqrt{5}\)
Từ đây ta có: \(\sqrt{5+1}+\sqrt{17}< 3\sqrt{5}\) (không thỏa mãn)
Vậy không tồn tại tam giác với độ dài 3 cạnh đã cho