K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2019

Biểu diễn số học sinh làm được bài I, bài II, bài III bằng biểu đồ Ven 

b5

Vì chỉ có 1 học sinh giải đúng 3 bài nên điền số 1 vào phần chung của 3 hình tròn.
Có 2 học sinh giải được bài I và bài II, nên phần chung của 2 hình tròn này mà không chung với hình tròn khác sẽ điền số 1 (vì 2- 1 = 1).
Tương tự, ta điền được các số 4 và 5 (trong hình).
Nhìn vào hình vẽ ta có:
+ Số học sinh chỉ làm được bài I là: 20 – 1 – 1 – 5 = 13 (bạn)
+ Số học sinh chỉ làm được bài II là: 14 – 1 – 1 – 4 = 8 (bạn)
+ Số học sinh chỉ làm được bài III là: 10 – 5 – 1 – 4 = 0 (bạn)
Vậy số học sinh làm được ít nhất một bài là: (Cộng các phần không giao nhau trong hình)
13 + 1 + 8 + 5 + 1 + 4 + 0 = 32 (bạn)
Suy ra số học sinh không làm được bài nào là:
35 – 32 = 3 (bạn)
Đáp số: 3 bạn

Có 60 hs

 Bạn đam mê toán học? Nhưng kiến thức toán học vẫn chưa đủ đối với bạn. Vậy còn gì tuyệt vời hơn khi có trong tay những quyển sách toán học mà bạn yêu thích. Mình có 12 quyển sách toán từ tủ sách Sputnik, bạn nào muốn mua thì nhắn tin cho mình nhé.Ps: Sách mới trên 95 %.Mỗi cuốn sách mình sẽ sale từ 5% đến 10% so với giá bìa , shipping 25k nhé các bạnVì  không đăng được hình ảnh nên...
Đọc tiếp

 

Bạn đam mê toán học? Nhưng kiến thức toán học vẫn chưa đủ đối với bạn. Vậy còn gì tuyệt vời hơn khi có trong tay những quyển sách toán học mà bạn yêu thích. Mình có 12 quyển sách toán từ tủ sách Sputnik, bạn nào muốn mua thì nhắn tin cho mình nhé.

Ps: Sách mới trên 95 %.Mỗi cuốn sách mình sẽ sale từ 5% đến 10% so với giá bìa , shipping 25k nhé các bạn

Vì  không đăng được hình ảnh nên mình xin phép được liệt kê tên các cuốn sách mà mình có

1. Tổ hợp và quy nạp

2. Toán học qua các câu chuyện về tập hợp

3. Các kỳ thi toán VMO. Lời giải và bình luận

4. Hình học phẳng

5. Hình học không gian

6. Xung quanh phép quay hướng dẫn môn hình học sơ cấp

7. 169 bài toán hay cho trẻ em và người lớn

8. Bài tập hình học chọn lọc cho học sinh trung học cơ sở

9. Bài tập số học và đại số chọn lọc cho học sinh trung học cơ sở

10. Hình học tổ hợp

11. Các bài giảng về toán cho Mirella tập 1

12. Các bài giảng về toán cho Mirella tập 2

0
7 tháng 1 2016

toi khong hieu cau hoi cua ban

Giải mã bài toán chứng minh 4=5.Bài toán này vốn là 1 bài toán mẹo nhưng đây thực ra đây là bài toán phản khoa học của mấy đứa bạn học sinh lớp 8 hiện nay nghĩ ra. Sau đây là mẹo của những người làm bài mà mọi người ko để ý được:+Những người giải được bài này thường dựa vào đẳng thức của năm lớp 7 là (-A)^2=A^2 với mọi A E R để đánh lừa người khác. Một số người chứng...
Đọc tiếp

Giải mã bài toán chứng minh 4=5.

Bài toán này vốn là 1 bài toán mẹo nhưng đây thực ra đây là bài toán phản khoa học của mấy đứa bạn học sinh lớp 8 hiện nay nghĩ ra. Sau đây là mẹo của những người làm bài mà mọi người ko để ý được:

+Những người giải được bài này thường dựa vào đẳng thức của năm lớp 7 là (-A)^2=A^2 với mọi A E R để đánh lừa người khác. Một số người chứng minh bài này đều đưa đến kết quả hằng đẳng thức (4-9/2)^2=(5-9/2)^2=>(-0,5)^2=(0,5)^2. Từ đẳng thức (-A)^2=A^2 những người này đã "hô biến" (-0,5)^2 thành (0,5)^2 để khẵng định -0,5=0,5 rồi suy ra 4=5 nhưng thực ra bài toán này ko đúng và phản khoa học vì cứ làm như vậy thì dễ dàng chứng minh các số khác bằng nhau. Cứ như vầy thành ra các số thực đều bằng nhau, đâm ra phản khoa học và gây ảnh hưởng lớn đến nền toán học. Một bài toán chứng minh 4=5 thế này thì đã góp phần làm xấu nền toán học.

3
26 tháng 1 2016

tối cũng đồng ý mặc dù tôi ko biết j về toán lơp8

25 tháng 4 2016

Dong y

13 tháng 2 2020

gọi a,b,c lần lượt là số học sinh chỉ giải được bài A,B,C

d là số học sinh giải được 2 bài B và C nhưng không giải được bài A

Khi đó : số học sinh giải được bài A và thêm ít nhất 1 bài trong hai bài B và C là : 25 - a - b - c - d

Theo bài ra :

Số thí sinh chỉ giải được bài A bằng số thí sinh chỉ giải được bài B cộng với số thí sinh chỉ giải được bài C

\(\Rightarrow a=b+c\)

số thí sinh không giải được bài A thì số thí sinh đã giải được bài B gấp hai lần số học sinh giải được bài C 

\(\Rightarrow b+d=2\left(c+d\right)\)

Số học sinh chỉ giải được bài A nhiều hơn số thí sinh giải được bài A và thêm bài khác là một người 

\(\Rightarrow\)  a = 1 + 25 - a - b - c - d

từ các đẳng thức trên suy ra : \(\hept{\begin{cases}b=2c+d\\3\left(b+c\right)=26-d\end{cases}\Rightarrow\hept{\begin{cases}d=b-2c>0\\3\left(b+c\right)+b-2c=26\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}d=b-2c>0\\4b+c=26\end{cases}\Rightarrow\hept{\begin{cases}b=6\\c=2\end{cases}}}\)

Vậy ....

Hẳn là nhiều người trong chúng ta mất nhiều năm trời học qua cấp 1, cấp 2 và cấp 3 để thoát khỏi môn Toán (để rồi lên Đại học lại dính phải Toán Cao Cấp như tôi chả hạn). Các bạn nghĩ bài tập toán giao về nhà sau mỗi tiết học là khoai ư? Vậy thì các bạn hãy nhìn vào bài toán này đây, để giải nó cần tới 3 nhà toán học và 200 terabyte dung lượng chỉ để chứa lời giải, đấy là...
Đọc tiếp

Hẳn là nhiều người trong chúng ta mất nhiều năm trời học qua cấp 1, cấp 2 và cấp 3 để thoát khỏi môn Toán (để rồi lên Đại học lại dính phải Toán Cao Cấp như tôi chả hạn). Các bạn nghĩ bài tập toán giao về nhà sau mỗi tiết học là khoai ư? Vậy thì các bạn hãy nhìn vào bài toán này đây, để giải nó cần tới 3 nhà toán học và 200 terabyte dung lượng chỉ để chứa lời giải, đấy là đã có một siêu máy tính giúp sức rồi đấy nhé!

Bạn cứ tính, 1 terabyte chứa được 337.920 bản Chiến Tranh Và Hòa Bình, bộ tiểu thuyết của Lev Tolstoy, bộ tiểu thuyết dài nhất trong lịch sử loài người, vậy thì 200 terabyte sẽ chứa lượng chữ nhiều khủng khiếp đến nhường nào.

Bài toán này khó đến mức nào mà bài giải lại vĩ đại tới vậy? Đó là một vấn đề toán học xoay quanh định lý Pythagoras (hay chúng ta vẫn biết nó dưới tên định lý Py-ta-go), được đưa ra lần đầu tiên bởi giáo sư toán học Ronald Graham hồi những năm 1980. Có tên là Biến Số Đúng Sai Của Bộ Ba Số Nguyên Dương Pythagoras (Boolean Pythagorean Triples), vấn đề toán học này “khoai” đến mức Graham đã treo giải 100 USD cho bất kì ai giải được (năm 1980 nhé!).

Vấn đề toán học này xoay quanh công thức của định lý Pythagoras: a^2 b^2 = c^2. Trong đó a và b là hai cạnh góc vuông của một tam giác vuông, còn c là cạnh huyền.

 

Công thức của định lý Pythagoras.

Công thức của định lý Pythagoras.

 

Giải thích về tên của vấn đề toán học này:

Bolean là biến có giá trị đúng hoặc sai.

1
18 tháng 8 2017

Còn về Pythagoras Triples, có những bộ số nguyên dương được gọi là bộ ba Pythagoras sẽ luôn đúng khi áp dụng vào công thức của Pythagoras như : 3^2 4^2 = 5^2; 8^2 15^2 = 17^2. Chúng được gọi là Bộ Ba Số Nguyên Dương Pythagoras.

Và bạn hãy tưởng tượng rằng mọi số nguyên dương trong bảng chữ số sẽ được tô màu hoặc đỏ hoặc xanh. Graham đã đưa ra bài toán rằng: liệu có khả thi không khi thực hiện việc tô màu mọi số nguyên hoặc xanh hoặc đỏ, để cho không có Bộ Ba Pythagoras nào có cùng màu. Và 100 USD sẽ được thưởng cho bất cứ người nào giải được bài toán ấy (Chà, với 100 USD thì ta có thể chi trả cho tận 1 cái ổ có dung lượng 1 terabyte).

Vấn đề toán học này khó ở chỗ: một số nguyên dương có thể nằm trong nhiều Bộ Ba Pythagoras khác nhau. Ví dụ như số 5, ta có dãy 3-4-5 là Bộ Ba Pythagoras, nhưng dãy 5-12-13 cũng vậy. Áp dụng điều kiện của Graham, nếu số 5 của dãy đầu tiên tô màu xanh, thì trong dãy thứ hai nó cũng phải là màu xanh, vì thế số 12 và 13 phải mang màu đỏ.

Càng tiến xa hơn với điều kiện mà Graham đề ra, các con số càng lớn và vấn đề bắt đầu nảy sinh. Nếu như số 12 phải mang màu đỏ trong dãy 5-12-13, những dãy số sau này chứa số 12 sẽ bắt buộc mang một màu nhất định.

Các nhà toán học Marijn Heule từ Đại học Texas, Victor Marek từ Đại học Kentucky, và Oliver Kullmann từ Đại học Swansea tại Anh đã cùng nhau giải quyết vấn đề này. Họ đã cài đặt một số phép thử và kĩ thuật tính toán vào trong siêu máy tính Stampede tại Đại học Texas, để cho nó có thể thu hẹp phạm vi “tô màu” xuống còn 102,300 tỷ tỷ khả năng (trăm nghìn tỷ tỷ, từng đó là có tổng cộng 25 số “0” đó các bạn).

Bộ siêu máy tính gồm 800 vi xử lý mạnh mẽ đã phải mất tới 2 ngày để “nhằn” hết đống phép thử kia, và nó chỉ có thể khả thi cho tới số 7.824. Bắt đầu từ 7.825 trở đi là không thể thỏa mãn điều kiện đặt ra của Graham.

Vậy là 3 nhà toán học (kèm một cái siêu máy tính) đã giải quyết được vấn đề toán học đã tồn tại cả thập kỉ này, và cụ Ronald Graham cũng đã giữ lời hứa của mình, thưởng “hậu hĩnh” món tiền 100 USD cho 3 anh.

“Bộ ba nguyên tử” của 3 nhà toán học này đã tạo ra một bản nén 68 gigabyte cho bất kì bạn trẻ nào có một bộ vi xử lý tốt cùng với 30.000 giờ rảnh rỗi để tải về, tái dựng và xác minh vấn đề. Nhưng nếu bạn có 30.000 giờ rảnh thật thì cũng còn một vấn đề khác nữa, con người không thể đọc được những dòng thuật toán đó.

Thực tế, bộ ba đã phải “nhờ” một chương trình máy tính khác để xác minh lại kết quả của họ, và cuối cùng thì 7.824 là con số chính xác. Ronald Graham cũng hài lòng với việc xác minh được con số này.

Nhưng nhiều người cho rằng, con người không đọc nổi kết quả nên nó không đủ thuyết phục. Dù không chứng minh được là nó sai, nhưng việc đó cũng không giải quyết vấn đề đến tận cùng. Tại sao bắt đầu từ số 7.825 trở đi thì việc “tô màu” là bất khả thi? Chúng ta không giải thích được, mà chỉ được dàn siêu máy tính kia cho biết vậy thôi.

Làm sau mà con người có thể hiểu được ý nghĩa của các con số với chúng ta cũng như với cả Vũ trụ nếu như mọi vấn đề toán học được giải quyết bằng máy như vậy. Sự thực là vấn đề này quá khó giải quyết, có lẽ cũng lại phải nhờ một bộ siêu máy tính nào đó vào cuộc thôi.

15 tháng 2 2017

91 điểm

15 tháng 2 2017

95 điểm

11 tháng 3 2017

co len quan ko vay ban

11 tháng 3 2017

đề sai