K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

Theo bài ra ta có: \(4b^2-6a^2=49\)

\(\frac{a}{b}=\frac{4}{7}\Rightarrow\frac{a}{4}=\frac{b}{7}\Rightarrow\frac{a^2}{16}=\frac{b^2}{49}\Rightarrow\frac{6a^2}{96}=\frac{4b^2}{196}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{6a^2}{96}=\frac{4b^2}{196}=\frac{4b^2-6a^2}{196-96}=\frac{49}{100}\)

\(\Rightarrow\left\{\begin{matrix}\frac{6a^2}{96}=\frac{49}{100}\Rightarrow a^2=\frac{49\cdot96}{100\cdot6}=7,84\Rightarrow a=\pm2,8\\\frac{4b^2}{196}=\frac{49}{100}\Rightarrow b^2=\frac{49\cdot196}{100\cdot4}=24,01\Rightarrow b=\pm4,9\end{matrix}\right.\)

Vì ta cần tính giá trị nhỏ nhất của \(3a+2b\) nên ta chọn giá trị a,b nhỏ nhất suy ra \(a=-2,8;b=-4,9\)

Khi đó \(GTNN_{3a+2b}=3\cdot\left(-2,8\right)+2\cdot\left(-4,9\right)=-18,2\)

9 tháng 10 2017

Lời giải:

\(A=2004+\sqrt{2003-x}\)

a)Để \(A\) có nghĩa thì \(2003-x\ge0\Leftrightarrow x\le2003\)

b) Ta có:

\(A=2004+\sqrt{2003-x}=2005\)

Tương đương với:

\(\sqrt{2003-x}=1\)

Suy ra :\(\left|2003-x\right|=1\Rightarrow\left[{}\begin{matrix}2003-x=1\\2003-x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2002\\x=2004\end{matrix}\right.\)

c) Ta có:

Để \(A\) nhỏ nhất thì \(\sqrt{2003-x}\) cũng phải nhỏ nhất

\(\sqrt{2003-x}\ge0\Leftrightarrow2004+\sqrt{2003-x}\ge2004\)

Dấu "=" xảy ra khi: \(x=2003\)

6 tháng 3 2016

a ) Vì | x + 1 | ≥ 0 ∀ x ∈ N 

Để A = | x + 1 | + 1,7 min <=> x + 1 = 0 => x = - 1

Vậy min A = 1,7 <=> x = - 1

b ) Vì B = | x - 2/3 | ≥ 0 ∀ x ∈ N 

Để | x -2/3 | + 3/7 min <=> x - 2/3 = 0 => x = 2/3

Vậy min B = 3/7 <=> x = 2/3

J
29 tháng 4 2019

\(a^2+4b^2+9=2ab+3a+6b\)

\(\Leftrightarrow2a^2+8b^2+18=4ab+6a+12b\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-6a+9\right)+\left(4b^2-12b+9\right)=0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-3\right)^2+\left(2b-3\right)^2=0\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-2b\right)^2=0\\\left(a-3\right)^2=0\\\left(2b-3\right)^2=0\end{matrix}\right.\)

(do \(\left(a-2b\right)^2\ge0;\left(a-3\right)^2=0;\left(2b-3\right)^2=0\) )

\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=\frac{3}{2}\end{matrix}\right.\) Vậy (a;b)=(3;3/2)

Y
29 tháng 4 2019

\(\Leftrightarrow2\left(a^2+4b^2+9\right)=2\left(2ab+3a+6b\right)\)

\(\Leftrightarrow2a^2+8b^2+18-4ab-6a-12b=0\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-6a+9\right)+\left(4b^2-12b+9\right)=0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-3\right)^2+\left(2b-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2b\right)^2=0\\\left(a-3\right)^2=0\\\left(2b-3\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-2b=0\\a-3=0\\2b-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=3\\b=\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=\frac{3}{2}\end{matrix}\right.\)