Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có: \(4b^2-6a^2=49\)
\(\frac{a}{b}=\frac{4}{7}\Rightarrow\frac{a}{4}=\frac{b}{7}\Rightarrow\frac{a^2}{16}=\frac{b^2}{49}\Rightarrow\frac{6a^2}{96}=\frac{4b^2}{196}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{6a^2}{96}=\frac{4b^2}{196}=\frac{4b^2-6a^2}{196-96}=\frac{49}{100}\)
\(\Rightarrow\left\{\begin{matrix}\frac{6a^2}{96}=\frac{49}{100}\Rightarrow a^2=\frac{49\cdot96}{100\cdot6}=7,84\Rightarrow a=\pm2,8\\\frac{4b^2}{196}=\frac{49}{100}\Rightarrow b^2=\frac{49\cdot196}{100\cdot4}=24,01\Rightarrow b=\pm4,9\end{matrix}\right.\)
Vì ta cần tính giá trị nhỏ nhất của \(3a+2b\) nên ta chọn giá trị a,b nhỏ nhất suy ra \(a=-2,8;b=-4,9\)
Khi đó \(GTNN_{3a+2b}=3\cdot\left(-2,8\right)+2\cdot\left(-4,9\right)=-18,2\)
Lời giải:
\(A=2004+\sqrt{2003-x}\)
a)Để \(A\) có nghĩa thì \(2003-x\ge0\Leftrightarrow x\le2003\)
b) Ta có:
\(A=2004+\sqrt{2003-x}=2005\)
Tương đương với:
\(\sqrt{2003-x}=1\)
Suy ra :\(\left|2003-x\right|=1\Rightarrow\left[{}\begin{matrix}2003-x=1\\2003-x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2002\\x=2004\end{matrix}\right.\)
c) Ta có:
Để \(A\) nhỏ nhất thì \(\sqrt{2003-x}\) cũng phải nhỏ nhất
\(\sqrt{2003-x}\ge0\Leftrightarrow2004+\sqrt{2003-x}\ge2004\)
Dấu "=" xảy ra khi: \(x=2003\)
a ) Vì | x + 1 | ≥ 0 ∀ x ∈ N
Để A = | x + 1 | + 1,7 min <=> x + 1 = 0 => x = - 1
Vậy min A = 1,7 <=> x = - 1
b ) Vì B = | x - 2/3 | ≥ 0 ∀ x ∈ N
Để | x -2/3 | + 3/7 min <=> x - 2/3 = 0 => x = 2/3
Vậy min B = 3/7 <=> x = 2/3
\(a^2+4b^2+9=2ab+3a+6b\)
\(\Leftrightarrow2a^2+8b^2+18=4ab+6a+12b\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-6a+9\right)+\left(4b^2-12b+9\right)=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-3\right)^2+\left(2b-3\right)^2=0\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-2b\right)^2=0\\\left(a-3\right)^2=0\\\left(2b-3\right)^2=0\end{matrix}\right.\)
(do \(\left(a-2b\right)^2\ge0;\left(a-3\right)^2=0;\left(2b-3\right)^2=0\) )
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=\frac{3}{2}\end{matrix}\right.\) Vậy (a;b)=(3;3/2)
\(\Leftrightarrow2\left(a^2+4b^2+9\right)=2\left(2ab+3a+6b\right)\)
\(\Leftrightarrow2a^2+8b^2+18-4ab-6a-12b=0\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-6a+9\right)+\left(4b^2-12b+9\right)=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-3\right)^2+\left(2b-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2b\right)^2=0\\\left(a-3\right)^2=0\\\left(2b-3\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-2b=0\\a-3=0\\2b-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=3\\b=\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=\frac{3}{2}\end{matrix}\right.\)