Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x;y;z\in Z\)
Xét hiệu: (x3 + y3 + z3) - (x + y + z)
= (x3 - x) + (y3 - y) + (z3 - z)
= x.(x2 - 1) + y.(y2 - 1) + z.(z2 - 1)
= x.(x - 1).(x + 1) + y.(y - 1).(y + 1) + z.(z - 1).(z + 1)
Dễ thấy x.(x - 1).(x + 1); y.(y - 1).(y + 1); z.(z - 1).(z + 1) đều là tích 3 số nguyên liên tiếp nên 3 tích này đều chia hết cho 2 và 3
Mà (2;3)=1 nên mỗi tích này chia hết cho 6
=> (x3 + y3 + z3) - (x + y + z) chia hết cho 6
Như vậy nếu x3 + y3 + z3 chia hết cho 6 thì x + y + z chia hết cho 6 và ngược lại (đpcm)
Ta có: \(5x+2y⋮17\)
\(\Leftrightarrow5x+2y+17\left(x+y\right)⋮17\)
\(\Leftrightarrow22x+19y⋮17\)
\(\Leftrightarrow\left(22x+19y\right)-\left(5x+2y\right)6⋮17\)
\(\Leftrightarrow-8x+7y⋮17\)
\(\Leftrightarrow9x+7y⋮17\)( đpcm)
a)
Ta có : (6x+11y) chia hết cho 31
=> 6x+11y+31y chia hết cho 31 ( Vì 31 chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x+7y) chia hết cho 31
=> x+7y chia hết cho 31
b)
3a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮53a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮5, mà (3,5)=1(3,5)=1 nên a−c⋮5a−c⋮5
Vì −8≤a−c≤9−8≤a−c≤9 nên a−c∈−5;0;5a−c∈−5;0;5
Với a−c=−5(1)a−c=−5(1), Thế vào (*), được: b−c=3(2)b−c=3(2). Từ (1), (2) suy ra: a−b=−8a−b=−8 hay b=a+8⇒a=1,b=9,c=6b=a+8⇒a=1,b=9,c=6. Ta được số 196.
Với a−c=0a−c=0 hay a=ca=c loại vì 3 chữ số khác nhau.
Với a−c=5a−c=5 lập luận tương tự, ta được:
b=0;a=8;c=3b=0;a=8;c=3. Ta được số 803.
b=1;a=9;c=4b=1;a=9;c=4. Ta được số 914.
Vậy có tất cả 3 số thỏa mãn đề bài.
+TH1: x⋮3 và y⋮3 thì x2⋮3 và y2⋮3 => x2+y2⋮3.
+TH2: x⋮3 và y không chia hết cho 3 (hoặc x không chia hết cho 3 và y⋮3)
=> x2⋮3 và y2 không chia hết cho 3 => x2+y2 không chia hết cho 3 -> loại
+TH3: x và y cùng chia 3 dư 1; giả sử x = 3a+1; y = 3b+1
\(x^2+y^2=\left(3a+1\right)^2+\left(3b+1\right)^2=9a^2+6a+1+9b^2+6b+1=3\left(3a^2+2a+3b^2+2b\right)+2\)
=> x2+y2 chia 3 dư 2 -> loại.
+TH4: x và y cùng chia 3 dư 2; giả sử x = 3a-1; y = 3b-1
\(x^2+y^2=\left(3a-1\right)^2+\left(3b-1\right)^2=9a^2-6a+1+9b^2-6b+1=3\left(3a^2-2a+3b^2-2b\right)+2\)=> x2+y2 chia 3 dư 2 -> loại
+TH5: x chia 3 dư 1 và y chia 3 dư 2 (hoặc x chia 3 dư 2 và y chia 3 dư 1); giả sử x = 3a+1; y = 3b-1
\(x^2+y^2=\left(3a+1\right)^2+\left(3b-1\right)^2=9a^2+6a+1+9b^2-6b+1=3\left(3a^2+2a+3b^2-2b\right)+2\)=> x2+y2 chia 3 dư 2 -> loại
Vậy: x2 + y2 chia hết cho 3 khi và chỉ khi x và y chia hết cho 3.