Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đặt cái trong là A ta có
A > \(\sqrt{1}\)= 1(1)
A < \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{4}}}}}\)
= 2 (2)
Từ (1) và (2) => 1 < A < 2
1/ Tính: \(A=\dfrac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}=\dfrac{\sqrt{\left(\sqrt{10}-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{10}+1\right)^2}}{2\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}+\sqrt{\left(2\sqrt{2}+2\right)^2}}=\dfrac{\sqrt{10}-\sqrt{5}+2\sqrt{2}+\sqrt{5}-\sqrt{10}-1}{2\sqrt{2}+2+2\sqrt{2}-1+2\sqrt{2}+2}=\dfrac{2\sqrt{2}-1}{6\sqrt{2}-3}=\dfrac{2\sqrt{2}-1}{3\left(2\sqrt{2}-1\right)}=\dfrac{1}{3}\)
\(B=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2}-\sqrt{3}}=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2}-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2}-\sqrt{3}\right)}=\dfrac{2\sqrt{2}-2\sqrt{2}-2\sqrt{3}+\sqrt{6}-\sqrt{6}-3+2\sqrt{2}+2\sqrt{2}+2\sqrt{3}-\sqrt{6}-\sqrt{6}-3}{2-\left(\sqrt{2}+\sqrt{3}\right)^2}=\dfrac{4\sqrt{2}-2\sqrt{6}-6}{2-2-3-2\sqrt{6}}=\dfrac{2\left(2\sqrt{2}-\sqrt{6}-3\right)}{-3-2\sqrt{6}}\)
Ta có:
\(\sqrt{2\sqrt{3\sqrt{4....\sqrt{2017}}}}\)
< \(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2016\sqrt{2018}}}}}\)
\(=\sqrt{2\sqrt{3\sqrt{4...\sqrt{2017^2-1}}}}\)
< \(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2015.2017}}}}\)
.......................................................................
< \(\sqrt{2.4}< \sqrt{9}=3\)
nói kĩ ra xem nào mình k hỉu