\(\sqrt{2\sqrt{3\sqrt{4\sqrt{5\sqrt{.....\sqrt{2017}}}}}}< 3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

Ta có:

\(\sqrt{2\sqrt{3\sqrt{4....\sqrt{2017}}}}\)

\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2016\sqrt{2018}}}}}\)

\(=\sqrt{2\sqrt{3\sqrt{4...\sqrt{2017^2-1}}}}\)

\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2015.2017}}}}\)

.......................................................................

\(\sqrt{2.4}< \sqrt{9}=3\)

  

15 tháng 8 2017

nói kĩ ra xem nào mình k hỉu

27 tháng 10 2017

thì cm rôif đó

27 tháng 8 2016

a/ Đặt cái trong là A ta có 

A > \(\sqrt{1}\)= 1(1)

A < \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{4}}}}}\)

= 2 (2)

Từ (1) và (2) => 1 < A < 2

27 tháng 8 2016

cảm ơn nhiều !

7 tháng 8 2018

1/ Tính: \(A=\dfrac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}=\dfrac{\sqrt{\left(\sqrt{10}-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{10}+1\right)^2}}{2\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}+\sqrt{\left(2\sqrt{2}+2\right)^2}}=\dfrac{\sqrt{10}-\sqrt{5}+2\sqrt{2}+\sqrt{5}-\sqrt{10}-1}{2\sqrt{2}+2+2\sqrt{2}-1+2\sqrt{2}+2}=\dfrac{2\sqrt{2}-1}{6\sqrt{2}-3}=\dfrac{2\sqrt{2}-1}{3\left(2\sqrt{2}-1\right)}=\dfrac{1}{3}\)

7 tháng 8 2018

\(B=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2}-\sqrt{3}}=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2}-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2}-\sqrt{3}\right)}=\dfrac{2\sqrt{2}-2\sqrt{2}-2\sqrt{3}+\sqrt{6}-\sqrt{6}-3+2\sqrt{2}+2\sqrt{2}+2\sqrt{3}-\sqrt{6}-\sqrt{6}-3}{2-\left(\sqrt{2}+\sqrt{3}\right)^2}=\dfrac{4\sqrt{2}-2\sqrt{6}-6}{2-2-3-2\sqrt{6}}=\dfrac{2\left(2\sqrt{2}-\sqrt{6}-3\right)}{-3-2\sqrt{6}}\)