K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

\(A=\frac{n\left(n+1\right)}{2};B=2n+1\\ \)

gọi d là ước lớn nhất của A và B

ta có

\(8A-B^2=4n^2+4n-\left(4n^2+4n+1\right)=1\)

Vậy \(d=+-1\) => A,B có ước lớn nhất là 1 =>dpcm 

5 tháng 5 2017

mình k hiểu cho lắm dong thứ 2

28 tháng 5 2016

a, 59x + 46y = 2004

Vì 2004 là số chẵn, 46y là số chẵn => 59x là số chẵn

=> x là số chẵn, mà x là số nguyên tố

=> x = 2

=> 2.59 + 46y = 2004

=> 46y = 2004 ‐ 118

=> 46y = 1886

=> y = 1886:46 => y = 41

Vậy x = 2; y = 41

29 tháng 5 2016

đã làm đề 23 rùi hả!!!!!

21 tháng 8 2016

dễ như ăn cháo

21 tháng 8 2016

gọi d thuộc ưc nguyên tố của ( 2n+!; 2n^2 -1); ta có

a; \(\frac{2n+1}{2n^2-1}=\frac{2\left(n^2+1\right)}{2n-1}=\frac{2n^2+2}{2n-1}\)cchia hết cho d

=> 2n^2+2-2n^2-chia hết choi d

=> 1 chia hết cho d=> d=1

vậy 2n+1/2n^2-1 nguyên tố cùng nhau

24 tháng 4 2016

Gọi d thuộc ƯC(\(\frac{n\left(n+1\right)}{2}\),2n+1) thì n(n+1) chia hết cho d và 2n+1 chia hết cho d.

=>n(2n+1) - n(n+1)chia hết cho d

<=>2\(n^2\)+n - \(n^2\)-n chia hết cho d

<=> \(n^2\)chia hết cho d

Từ n(n+1) chia hết cho d và \(n^2\) chia hết cho d => n chia hết cho d

Ta lại có 2n+1 chia hết cho d

=> 1 chia hết cho d => d=1

Vậy 2 số đó là 2 số nguyen tố

16 tháng 6 2016

Gọi d là ƯCLN( \(\frac{n\left(n+1\right)}{2}\), 2n+1) ( d thuộc N*)

Khi đó \(\frac{n\left(n+1\right)}{2}\) chia hết cho d và  2n+1 chia hết cho d

<=> n(n+1) chia hết cho d và  2n+1 chia hết cho d

<=> n+ n chia hết cho d và n(2n+1) chia hết cho d

<=> n2+n chia hết cho d, 2n2+n chia hết cho d

=> (2n2+n) - (n2+n) chia hết cho d

=> n2 chia hết cho d

Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d 

=> n chia hết cho d

=> 2n chia hết cho d

Mà 2n+1 chia hết cho d

=> (2n+1)-2n chia hết cho d

=> 1 chia hết cho d

Mà d \(\in\) N => d=1

Vậy \(\frac{n\left(n+1\right)}{2}\) và 2n+1 nguyên tố cùng nhau với mọi n \(\in\) N

16 tháng 6 2016

Gọi d = ƯCLN( n(n+1)/2, 2n+1) ( d thuộc N*)

=> n(n+1)/2 chia hết cho d, 2n+1 chia hết cho d

=> n(n+1) chia hết cho d, 2n+1 chia hết cho d

=> n2+n chia hết cho d, n(2n+1) chia hết cho d

=> n2+n chia hết cho d, 2n2+n chia hết cho d

=> (2n2+n) - (n2+n) chia hết cho d

=> 2n2+n-n2-n chia hết cho d

=> n2 chia hết cho d

Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d 

=> n chia hết cho d

=> 2n chia hết cho d

Mà 2n+1 chia hết cho d => (2n+1)-2n chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N => d=1

=> ƯCLN( n(n+1)/2, 2n+1)=1

Chứng tỏ n(n+1)/2 và 2n+1 nguyên tố cùng nhau với mọi n thuộc N