Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng tính chất của dãy tỉ số bằng nhau từ đó suy ra x=y=z=t là chứng minh được.
Ta có :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z+z}{x+y+z+t}\)
\(\frac{t}{x+y+z+t}< \frac{t}{z+t+x}< \frac{t+y}{x+y+z+t}\)
Cộng vế với vế ta được :
\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}< \frac{t}{z+t+x}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)
\(\Rightarrow1< M< 2\) Hay M ko là số tự nhiên
Giả sử \(x>y>z>t\)
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow\)\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x+y+z+t}{x+y+z+t}=1\)
\(\Rightarrow\)\(M>1\)\(\left(1\right)\)
Lại có : ( phần này áp dụng công thức \(\frac{a}{b}< \frac{a+m}{b+m}\) \(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\) )
\(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\) ( cộng tử và mẫu cho t )
\(\frac{y}{x+y+t}< \frac{y+z}{z+y+z+t}\) ( cộng tử và mẫu cho z )
\(\frac{z}{y+z+t}< \frac{x+z}{x+y+z+t}\) ( cộng tử và mẫu cho x )
\(\frac{t}{x+z+t}< \frac{y+t}{x+y+z+t}\) ( cộng tử và mẫu cho y )
\(\Rightarrow\)\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)
\(\Rightarrow\)\(M< 2\)\(\left(2\right)\)
Từ (1) và (2) suy ra : \(1< M< 2\)
Vậy M không là số tự nhiên với mọi \(x,y,z,t\inℕ\)
Chúc bạn học tốt ~
biến đổi ntn nè x/x+y+z+t + x/x+y+z+t + z/y+z+t + t/x+t+z bạn lm tiếp đi dễ mà dài
Có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+t+z}>\frac{t}{x+y+z+t}\)
=> \(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+t+z}>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}\)
=> \(M>\frac{x+y+z+t}{x+y+z+t}=1\)
=> \(M>1\)(1)
Ta có: \(\frac{a}{b}< \frac{a+m}{b+m};\forall m\inℕ^∗\)
=> \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+t+z}< \frac{t+y}{x+y+z+t}\)
=> \(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+t+z}>\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)
=> \(M< \frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)
=> \(M< 2\)(2)
Từ (1) và (2) => \(1< M< 2\)
=> \(M\notin N\)
=> M không có giá trị là số tự nhiên
ta có \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M\)\(>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)
ta lại có \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M>\frac{x+x+y+y+z+z+t+t}{x+y+z+t}=\frac{2x+2y+2z+2t}{x+y+z+t}=2\)
\(\Rightarrow1< M< 2\)
vậy M không phải là số tự nhiên
\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)
\(CM:\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m};m\in\)N*
Biến đổi tương đương.
\(\Rightarrow M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{x+z}{x+y+z+t}+\frac{t+y}{x+y+z+t}=2\)
Vì 1<M<2=> M ko phải stn