K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(9+4\sqrt{5}\)

\(=5+2\cdot\sqrt{5}\cdot2+4\)

\(=\left(\sqrt{5}+2\right)^2\)(đpcm)

b) Ta có: \(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}\)

=-2(ddpcm)

c) Ta có: \(\left(4-\sqrt{7}\right)^2\)

\(=16-2\cdot4\cdot\sqrt{7}+7\)

\(=23-8\sqrt{7}\)(đpcm)

d) Ta có: \(\sqrt{17-12\sqrt{2}}+2\sqrt{2}\)

\(=\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}+2\sqrt{2}\)

\(=\sqrt{\left(3-2\sqrt{2}\right)^2}+2\sqrt{2}\)

\(=3-2\sqrt{2}+2\sqrt{2}=3\)(đpcm)

25 tháng 6 2021

\(a.VT=4+4\sqrt{5}+5=2^2+4\sqrt{5}+\sqrt{5}^2=\left(2+\sqrt{5}\right)^2=VP\)

\(b.\) Dựa vào câu a ta có: \(9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)

\(VT=\left|\sqrt{5}-2\right|-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2=VP\)

\(c.VT=16-8\sqrt{7}+7=4^2-8\sqrt{7}+\sqrt{7}^2=\left(4-\sqrt{7}\right)^2=VP\)

\(d.\) 

Ta có: \(17-12\sqrt{2}=8-12\sqrt{2}+9=\left(2\sqrt{2}\right)^2-12\sqrt{2}+3^2=\left(2\sqrt{2}-3\right)^2\)

\(VT=\left|2\sqrt{2}-3\right|+2\sqrt{2}=3-2\sqrt{2}+2\sqrt{2}=3=VP\)

25 tháng 8 2017

a) \(9+4\sqrt{5}=4+4\sqrt{5}+5=2^2+2\cdot2\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{5}+2\right)^2\left(ĐPCM\right)\)

21 tháng 9 2017

a) \(9+4\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2=\left(\sqrt{5}+2\right)^2\left(đpcm\right)\)

b)\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\left(đpcm\right)\)

c)\(\left(4-\sqrt{7}\right)^2=16-8\sqrt{7}+7=23-8\sqrt{7}\left(đpcm\right)\)

d)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}=4+\sqrt{7}-\sqrt{7}=4\left(đpcm\right)\)

3 tháng 9 2019

a) \(\sqrt{3^2}-\sqrt{7^2}+\sqrt{\left(-1\right)^2}=|3|-|7|+|-1|=3-7+1=-3\)

b) \(-2\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}+\sqrt{3^2}=-2|2|+|-5|+\left|3\right|=-4+5+3=4\)

c) \(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}=\left|2-\sqrt{2}\right|+\left|2+\sqrt{2}\right|=2-\sqrt{2}+2+\sqrt{2}=4\)

d) \(\sqrt{\left(3\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}=\left|3\sqrt{2}\right|-\left|1-\sqrt{2}\right|=3\sqrt{2}-\sqrt{2}+1=2\sqrt{2}+1\)

e) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}-1\right|+\left|\sqrt{2}+1\right|=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)

f) \(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|+\left|\sqrt{5}+2\right|=\sqrt{5}-2+\sqrt{5}+2=2\sqrt{5}\)

g) \(\sqrt{9-4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{9-2\sqrt{8}}+\sqrt{2-2\sqrt{2}.3+9}=\sqrt{\left(\sqrt{8}-1\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}=\sqrt{8}-1+3-\sqrt{2}=2-\sqrt{2}+\sqrt{8}\)

h) \(\sqrt{12+8\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{12+2\sqrt{4}\sqrt{8}}+\sqrt{6-2\sqrt{2}\sqrt{4}}=\sqrt{\left(\sqrt{4}+\sqrt{8}\right)^2}+\sqrt{\left(\sqrt{4}-\sqrt{2}\right)^2}=\sqrt{4}+\sqrt{8}+\sqrt{4}-\sqrt{2}\)

k) \(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{\left(\sqrt{3}+2\right)^2}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

a)

\((2\sqrt{5}-\sqrt{7})(2\sqrt{5}+\sqrt{7})=(2\sqrt{5})^2-(\sqrt{7})^2=13\)

b)

\((\sqrt{5-2\sqrt{6}}+\sqrt{2})\sqrt{3}=(\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2})\sqrt{3}\)

\(=(\sqrt{(\sqrt{3}-\sqrt{2})^2}+\sqrt{2})\sqrt{3}=(\sqrt{3}-\sqrt{2}+\sqrt{2})\sqrt{3}=\sqrt{3}.\sqrt{3}=3\)

c)

\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{2^2+3-2.2\sqrt{3}}+\sqrt{2^2+3+2.2\sqrt{3}}\)

\(=\sqrt{(2-\sqrt{3})^2}+\sqrt{(2+\sqrt{3})^2}=2-\sqrt{3}+2+\sqrt{3}=4\)

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

d)

\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{3^2+6-2.3\sqrt{6}}+\sqrt{9+24-2\sqrt{9.24}}\)

\(=\sqrt{(3-\sqrt{6})^2}+\sqrt{(\sqrt{24}-3)^2}=3-\sqrt{6}+\sqrt{24}-3\)

\(=\sqrt{6}\)

e)

\(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}=\sqrt{\frac{6+2\sqrt{5}}{2}}+\sqrt{\frac{6-2\sqrt{5}}{2}}\)

\(=\sqrt{\frac{5+1+2\sqrt{5.1}}{2}}+\sqrt{\frac{5+1-2\sqrt{5.1}}{2}}=\sqrt{\frac{(\sqrt{5}+1)^2}{2}}+\sqrt{\frac{(\sqrt{5}-1)^2}{2}}\)

\(=\frac{\sqrt{5}+1}{\sqrt{2}}+\frac{\sqrt{5}-1}{\sqrt{2}}=\sqrt{10}\)

g)

\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{20+3-2\sqrt{20.3}}\)

\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{20}-\sqrt{3})^2}\)

\(=\sqrt{5}-\sqrt{3}-(\sqrt{20}-\sqrt{3})=\sqrt{5}-\sqrt{20}=-\sqrt{5}\)

Rút gọn biểu thức: 1) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}\) 2) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\) 3) \(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}\) 4) \(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\) 5) \(\sqrt{12}+\sqrt{75}-\sqrt{27}\) 6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\) 7) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\) 8) \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\) 9) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+}\) 10) \(\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}\) 11)...
Đọc tiếp

Rút gọn biểu thức:

1) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}\)

2) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)

3) \(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)

4) \(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)

5) \(\sqrt{12}+\sqrt{75}-\sqrt{27}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)

7) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)

8) \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\)

9) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+}\)

10) \(\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}\)

11) \(\dfrac{2}{4-3\sqrt{2}}-\dfrac{2}{4+3\sqrt{2}}\)

12) \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)

13) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

14) \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)

15) \(\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{120}\)

16) \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+2\sqrt{6}+3\sqrt{24}\)

17) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+3\right)^2}\)

18) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

19) \(\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)

20) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)

4
3 tháng 1 2019

1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)

2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)

3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2} \)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)

4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)

5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)

7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)

8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2


4 tháng 1 2019
https://i.imgur.com/pmexRQv.jpg
11 tháng 9 2019

undefined

16 tháng 12 2016

a)\(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}=3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}=-10\sqrt{2}\)

b) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}=20\sqrt{3}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}=4\sqrt{3}\)

c)\(\sqrt{12}+2\sqrt{75}-3\sqrt{48}-\frac{2}{7}\sqrt{147}=2\sqrt{3}+10\sqrt{3}-12\sqrt{3}-2\sqrt{3}=-2\sqrt{3}\)

d) \(\sqrt{\left(3+\sqrt{5}\right)^2}-\sqrt{9-4\sqrt{5}}\)

\(=\left|3+\sqrt{5}\right|-\sqrt{\left(\sqrt{5}-2\right)^2}=3+\sqrt{5}-\left|\sqrt{5}-2\right|=3+\sqrt{5}-\sqrt{5}+2=5\)

e) \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{\sqrt{5}+\sqrt{2}}{3}\)

\(=\left[\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\cdot\frac{3}{\sqrt{5}+\sqrt{2}}\)

\(=-\left(\sqrt{2}+\sqrt{5}\right)\cdot\frac{3}{\sqrt{5}+\sqrt{2}}=-3\)

Nản k lm nữa ^^

16 tháng 12 2016

giết người không dao

1: \(=\sqrt{36}=6\)

2: \(=\sqrt{\left(15-9\right)\left(15+9\right)}=\sqrt{24\cdot6}=12\)

3: \(=3\sqrt{5}-1-3\sqrt{5}-1=-2\)

4: \(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

5: \(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)=5-4=1\)

31 tháng 7 2017

https://hoc24.vn/hoi-dap/question/407636.html

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}\)

= 9

~ ~ ~ ~ ~

\(M=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\sqrt{3}-2}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}+1\)

31 tháng 7 2017

\(M=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

= 1