Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/b + b/a >= 2
<=> (a^2+b^2)/ab >=2
<=> a^2+b^2>=2ab
<=> a^2-2ab+b^2>=0
<=> (a-b)^2 >= 0 (*)
Biểu thức (*) đúng; quá trình biến đổi là tương đương do vậy biểu thức đã được chứng minh.
Chúc bạn học giỏi.
a. x= 1;2
b. x= 1;2;3;4;5;6
c. x= 6;7;8;9;...
d. x= 6;7;8;9;...
e. x= 1;2;3
a) x thuộc{1;-1;2;-2}
b)x thuộc {1;-1;2;-2;3;-3;4;-4;5;-5;6;-6}
c) x thuộc {6;-6;7;-7;...}
d) x thuộc {6:-6:7:-7;...}
f) x thuộc { 2;3;4;5;...}
e) x thuộc {0;1;2;3}
g) x thuộc {0;1}
Gọi b = a + k (k \(\in\) Z, k \(\ne\) -a)
\(\dfrac{a}{b}>0\)
Ta có:
\(\dfrac{a}{a+k}+\dfrac{a+k}{a}\\ =\dfrac{a^2}{a\cdot\left(a+k\right)}+\dfrac{\left(a+k\right)^2}{a\cdot\left(a+k\right)}\\ =\dfrac{a^2+\left(a+k\right)^2}{a\cdot\left(a+k\right)}\\ =\dfrac{a^2+\left(a^2+2ak+k^2\right)}{a^2+ak}\\ =\dfrac{a^2+a^2+2ak+k^2}{a^2+ak}\\ =\dfrac{2a^2+2ak+k^2}{a^2+ak}\\ =\dfrac{2a^2+2ak}{a^2+ak}+\dfrac{k^2}{a^2+ak}\\ =\dfrac{2\cdot\left(a^2+ak\right)}{a^2+ak}+\dfrac{k^2}{a^2+ak}\\ =2+\dfrac{k^2}{a^2+ak}>2\)
Vậy \(\dfrac{a}{a+k}+\dfrac{a+k}{a}>2\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}>2\left(đpcm\right)\)
Sai! CMR: \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) mà?
Vào đây đi:
dfrac{a}{b}+\dfrac{b}{a - Hoc24