Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A'=\frac{3}{4}.\frac{5}{6}.\frac{7}{8}...\frac{4999}{5000}\)
Rõ ràng A' > A
Suy ra \(AA'>A^2=\frac{2}{50000}=\frac{1}{2500}=\left(\frac{1}{50}\right)^2\)
nên \(A< \frac{1}{50}=0,02\) đpcm
Đặt \(M=\frac{3}{4}.\frac{5}{6}.\frac{7}{8}...\frac{4999}{5000}\)
Xét: \(A.M=\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}...\frac{4998}{4999}.\frac{4999}{5000}\)
\(\Leftrightarrow A.M=\frac{2.3.4.5...4998.4999}{3.4.5.6...4999.5000}\)
\(\Leftrightarrow A.M=\frac{2}{5000}\)
\(\Leftrightarrow A.M=\frac{1}{2500}\)
Mà \(0,02=\frac{1}{50}\)
\(\Rightarrow\frac{1}{2500}< \frac{1}{50}\)
\(\Rightarrow A.M< 0,02\)
\(\Rightarrow A< 0,02\)
Vậy A < 0,02.
2/3 > 0,02
4998/4999 > .... > 4/5 > 2/3 > 0,02
=> A = 2/3 . 4/5 ....4998/4999 .0,02
Vậy A > 2
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)( đpcm )
Câu hỏi của Lê Thị Minh Trang - Toán lớp 6 - Học toán với OnlineMath
Xem bài 1 nhé !
Bài 1:
Xét vế phải :
\(P=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}\)\(-1=2\)\(\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left(\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)
Đẳng thức được chứng tỏ là đúng
Bài 2 :
Đặt \(A'=\frac{3}{4}.\frac{4}{5}.\frac{7}{8}...\frac{4999}{5000}\)
Rõ ràng \(A< A'\)
SUY RA \(A^2< AA'=\frac{2}{50000}=\frac{1}{2500}=\left(\frac{1}{50}\right)^2\)
Nên \(A< \frac{1}{50}=0,02\)
Chúc bạn học tốt ( -_- )
Dãy các số nguyên từ -4999 ddeeens 4998: { -4998;-4997;...;0;...;4997}
Tổng = (-4998) + (-4997) + ... + 0 +...+ 4997
= (-4998) + [(-4997) + 4997] + ... + 0
= (-4998) + 0 + ... + 0
= -4998
gọi các số đó là x
ta có:x\(\in\){-4998,-4997,...,0,.....,4998,4997}
tổng các số nguyên x là :
-4998+-4997+...+0+....+4999
=0