\(\text{a}^2\left(\text{a}+1\right)+2\text{a}\left(\text{a}+1\right)\)chia h...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

toi ko bt

22 tháng 10 2019

1)

\(a^2\left(a+1\right)+2a(a+1)\)

\(=a\left(a+1\right)\left(a+2\right)\)

mà a; a+1 ; a+2 là 3 số nguyên liên tiếp luôn \(⋮6\)

=>  đpcm

22 tháng 10 2019

toi ko bt

20 tháng 6 2019

a) \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( luôn đúng )

Dấu "=" \(\Leftrightarrow a=b=c\)

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

+) vế 1 bđt \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )

+) vế 2 bđt \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )

Từ đây ta có đpcm

Dấu "=" \(\Leftrightarrow a=b=c\)

c) \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )

Dấu "=" \(\Leftrightarrow a=b\)

28 tháng 9 2019

\(A=a^3+b^3+3ab\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\)

\(=a^2-ab+b^2+3ab\)

\(=a^2+2ab+b^2\)

\(=\left(a+b\right)^2=1^2=1\)

\(B=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)

\(=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)

\(=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)

\(=4a^2-4ab+4b^2-6a^2-6b^2\)

\(=-2a^2-4ab-2b^2\)

\(=-2\left(a^2+2ab+b^2\right)\)

\(=-2\left(a+b\right)^2=-2.1^2=-2\)

1 : Áp dụng 3 hằng đẳng thức đầu

2 : Tách ra

6 tháng 8 2018

Chứng minh rằng : với mọi số tự nhiên n>1 thì \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>\sqrt{n}\)\(\sqrt{n}\)

7 tháng 8 2018

Đề sai rồi sửa lại đi