K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2020

bạn tham khảo link này

https://olm.vn/hoi-dap/detail/41711040592.html

9 tháng 11 2019

1) Tính C

\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

9 tháng 11 2019

3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)

15 tháng 3 2017

tại sao cậu toàn cho bài khó thế tớ chịu

31 tháng 8 2016

Đặt \(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+..........+\frac{1}{200}\)

Vậy \(A>\frac{1}{200}+\frac{1}{200}+.......+\frac{1}{200}\)

\(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+......+\frac{1}{200}\\ =\frac{100}{200}\\ =\frac{1}{2}\)

Vì \(\frac{1}{2}< \frac{5}{8}\Rightarrow A>\frac{5}{8}\)

31 tháng 8 2016

Đặt \(A=\frac{1}{101}+\frac{1}{102}+.........+\frac{1}{200}\)

\(A< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+.........+\frac{1}{100}\)

\(\frac{1}{100}+\frac{1}{100}+.........+\frac{1}{100}\\ =\frac{100}{100}\\ =1\)

Vì \(1>\frac{5}{8}\)\(\Rightarrow A>\frac{5}{8}\)

mình làm 2 cách bạn có nhận xét gì thì bình luận , hoặc hửi tin nhắn qua cho mình nhé

1 tháng 4 2019

A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102

=1+0+0+....+102=103

b) |1-2x|>7

=> 1-2x>7 hoặc 1-2x<-7

=> 2x<-6 hoặc 2x>8

=> x<-3 hoặc x>4

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Lời giải:

Ta có:

\(\text{VT}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\text{VP}\)

Ta có đpcm.